Model name | Training | Recall | Accuracy | F1-Score | MCC | AUC |
---|---|---|---|---|---|---|
AdaBoost | Imbalance | 0.376325 | 0.729278 | 0.374341 | 0.201620 | 1.000 |
CatBoost | Imbalance | 0.298587 | 0.806844 | 0.399527 | 0.326193 | 0.875 |
Decision Tree | Imbalance | 0.287986 | 0.806844 | 0.390887 | 0.322116 | 0.754 |
Gradient Boosting Decision Tree | Imbalance | 0.362191 | 0.730798 | 0.366726 | 0.195853 | 1.000 |
LightGBM | Imbalance | 0.280919 | 0.800000 | 0.376777 | 0.298428 | 0.944 |
Logistic regression | Imbalance | 0.266784 | 0.806844 | 0.37284 | 0.314087 | 0.768 |
Naive Bayes | Imbalance | 0.613074 | 0.660456 | 0.437303 | 0.241620 | 0.714 |
Random forest | Imbalance | 0.286219 | 0.805703 | 0.388024 | 0.317875 | 0.780 |
Support vetor machine | Imbalance | 0.000000 | 0.784791 | NA | NA | 0.646 |
XGBoost | Imbalance | 0.323322 | 0.801521 | 0.412162 | 0.320935 | 0.990 |
AdaBoost | Balance | 0.887827 | 0.848218 | 0.875550 | 0.681574 | 0.838 |
CatBoost | Balance | 0.886552 | 0.867382 | 0.889386 | 0.723863 | 0.938 |
Decision Tree | Balance | 0.768005 | 0.793024 | 0.816949 | 0.587348 | 0.863 |
Gradient Boosting Decision Tree | Balance | 0.891013 | 0.853200 | 0.879522 | 0.692142 | 0.869 |
LightGBM | Balance | 0.852135 | 0.728248 | 0.790423 | 0.418553 | 0.783 |
Logistic regression | Balance | 0.873168 | 0.811422 | 0.847772 | 0.602344 | 0.886 |
Naive Bayes | Balance | 0.698534 | 0.666922 | 0.716106 | 0.314429 | 0.823 |
Random Forest | Balance | 0.787126 | 0.803756 | 0.828303 | 0.605274 | 0.891 |
Support vetor machine | Balance | 0.876992 | 0.804140 | 0.843396 | 0.586093 | 0.882 |
XGBoost | Balance | 0.825420 | 0.846691 | 0.843834 | 0.694092 | 0.923 |