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Abstract
Background Insulin resistance (IR) plays a major role in increasing the risk of stroke. The objective of this research 
is to systematically evaluate and compare the impact of cumulative exposure over time to four commonly used IR 
surrogates—triglyceride-glucose (CumTyG) index, metabolic score for IR (CumMetS-IR), estimated glucose disposal 
rate (CumeGDR) and triglyceride to high-density lipoprotein cholesterol (CumTG/HDL-C) ratio—on stroke risk, 
providing insights for optimizing monitoring strategies for primary stroke prevention.

Methods The study population was sourced from the China Health and Retirement Longitudinal Study 
(CHARLS2011-2018). Cumulative exposure to IR (CumIR) surrogates was calculated as the mean value of IR surrogates 
measured in the first and third waves of CHARLS, multiplied by the total exposure duration. The primary endpoint 
was incident stroke, determined through questionnaires in the third and fourth waves of CHARLS. Multivariable 
Cox regression models were applied to estimate and compare HRs and 95% CIs for stroke across quartiles of CumIR 
surrogates.

Results A total of 4,669 participants with no history of stroke at baseline were included. During a median follow-up 
of 6 years, 347 new stroke events (7.43%) were recorded. The incidence rates of stroke in the highest quartiles of 
CumTyG index, CumTG/HDL-C ratio, and CumMetS-IR, as well as the lowest quartile of CumeGDR, were 9.67%, 9.93%, 
10.45%, and 13.02%, respectively. In terms of risk assessment, the multivariable Cox regression analysis showed that 
the highest quartiles of CumTyG index, CumTG/HDL-C ratio, and CumMetS-IR and the lowest quartile of CumeGDR 
were associated with stroke risk, with corresponding HR (95% CI) of 1.48(1.05–2.10), 1.61(1.15–2.24), 1.72(1.21–2.43), 
and 3.57(2.25–5.68), respectively. In terms of event prediction, receiver operating characteristic analysis revealed that 
CumeGDR had the highest predictive accuracy for incident stroke compared with other common IR surrogates.

Conclusions In assessing stroke risk and predicting events in middle-aged and elderly populations, cumulative 
exposure to eGDR demonstrates significant advantages over other common IR surrogates. Incorporating eGDR as an 
IR monitoring marker is recommended for primary stroke prevention.
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Introduction
The disease burden of stroke is one of the greatest global 
health challenges of the 21st century [1]. Over the past 
30 years, the absolute number of new stroke cases has 
increased by 70%, and the number of people living with 
stroke has increased by 85% [2]. In 2019, stroke caused 
6.55  million deaths and 143  million disability-adjusted 
life years worldwide, making it the second leading cause 
of death and disability globally [2–4]. Furthermore, it is 
important to note that the incidence of stroke increases 
with age [1]; given the rapid global aging trend, the num-
ber of deaths and disabilities worldwide is expected to 
rise significantly in the future [1]. Therefore, primary 
prevention should be a priority to mitigate the potential 
future burden of stroke-related diseases [5].

Insulin resistance (IR) refers to a condition in which 
insulin-targeted tissues exhibit reduced responsive-
ness to physiological levels of insulin [6], and it is a key 
characteristic in stroke patients [7]. Studies have shown 
that IR can lead to stroke by inducing hemodynamic 
disturbances, enhancing platelet adhesion, activation, 
and aggregation, as well as promoting atherosclerosis 
[7, 8]. There are currently various methods for assessing 
IR [9–11], including the hyperinsulinemic-euglycemic 
clamp [9], the quantitative insulin sensitivity check index 
[10], the homeostasis model assessment of IR [11], and 
IR surrogates such as triglyceride-glucose (TyG) index, 
triglyceride to high-density lipoprotein cholesterol (TG/

HDL-C) ratio, metabolic score for IR (MetS-IR), and 
estimated glucose disposal rate (eGDR) [12–16]. Among 
these methods, IR surrogates are the most frequently 
used worldwide due to their simplicity, convenience, 
reproducibility, and better potential for widespread appli-
cation. From a primary prevention perspective, identify-
ing the optimal IR surrogates for stroke risk assessment 
and event prediction is crucial for reducing the burden 
of stroke. However, considering the dynamic nature of 
the metabolic factors involved in IR surrogates, such as 
blood glucose, lipids, blood pressure, and obesity [17], it 
is important to further explore the longitudinal changes 
in IR surrogates and their effects on stroke.

Cumulative exposure has become a widely used 
approach in recent years for handling repeated measure-
ments in longitudinal studies, reflecting the intensity and 
duration of exposure to a given parameter over a period 
of time [18–22]. For example, prolonged high exposure to 
low-density lipoprotein cholesterol significantly increases 
the risk of atherosclerosis [23]. This differs from baseline 
single measurements, as cumulative exposure takes into 
account both the amount and duration of exposure dur-
ing follow-up. Given the current severity of stroke and 
the importance of primary prevention, and the lack of 
systematic studies evaluating the relationship between 
cumulative exposure to IR surrogates and stroke, the 
present study aims to analyze and compare the impact of 
cumulative exposure to four common IR surrogates (TyG 
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index, TG/HDL-C ratio, MetS-IR, and eGDR) over time 
on stroke risk using national data from the China Health 
and Retirement Longitudinal Study (CHARLS). The goal 
is to provide valuable research data for optimizing moni-
toring strategies in primary stroke prevention.

Methods
Study population
We utilized data from the CHARLS project, a detailed 
description of which has been provided in previous 
publications [24]. The overall design and implementa-
tion framework of CHARLS are summarized in supple-
mentary methods. Briefly, the baseline survey of the 
CHARLS study began in 2011–2012 and recruited 17,008 
participants from 28 provinces across China, cover-
ing 150 counties, 450 villages, and approximately 10,000 
households. The study population was selected through 
a multi-stage random sampling process, followed by ran-
dom selection from a sampling frame reflecting all resi-
dential units within each village/community. Regarding 
follow-up, the CHARLS team conducts national tracking 
surveys every 2–3 years following the baseline survey. As 
of now, four waves of national tracking surveys have been 
completed, in 2013, 2015, 2018, and 2020, with blood 
sample measurements available from the baseline survey 
and the 2015 survey.

For the present study, we included baseline data from 
the first wave of CHARLS and follow-up data from the 
third and fourth waves of the national surveys. Cumula-
tive IR (CumIR) surrogates were developed based on data 
from the first and third waves. The inclusion process for 
the study population is as follows: Step 1: We included 
participants aged ≥ 45 years from the baseline data of the 
first CHARLS wave who were followed up in the third 
wave. Step 2: We excluded participants who were diag-
nosed with stroke in the first wave or had an uncertain 
stroke status in either the first or third wave. Step 3: To 
calculate IR surrogates, participants were required to 
have fasting blood samples and obesity measurements, so 
we excluded those who did not undergo measurements 
of obesity parameters or blood tests, or who only com-
pleted non-fasting blood tests (i.e., did not have Cum-IR 
measured). A detailed flowchart of the study process was 
shown in Fig. 1.

Ethics statement
All participants in the CHARLS study provided written 
informed consent before participation, and subsequent 
surveys, physical measurements, blood collection, and 
follow-up were carried out after approval. The imple-
mentation of CHARLS was authorized by the Ethics 
Committee of Peking University (No. 00001052–11015), 
and all research data were de-identified.

Assessment of covariates and independent variables
Various covariates were assessed from the CHARLS 
questionnaires and datasets, including basic demo-
graphic characteristics (gender, age, education, mari-
tal status, and residence), lifestyle factors (smoking and 
drinking status), comorbidities (hypertension, diabetes, 
and heart disease), simple body measurements [systolic 
blood pressure, diastolic blood pressure, height, weight, 
body mass index (BMI), waist circumference (WC)], and 
blood biomarkers. Detailed assessments of lifestyle fac-
tors, comorbidities, and simple body measurements were 
summarized in supplementary methods.

Blood samples were collected after overnight fasting. 
Venous blood samples were collected by trained staff. 
To maintain sample stability, all samples were stored at 
-80 °C. Blood sample analysis was performed in the labo-
ratory of Peking University, where biomarkers includ-
ing glycated hemoglobin, fasting plasma glucose (FPG), 
HDL-C, low-density lipoprotein cholesterol, total choles-
terol, TG, uric acid, and creatinine were measured. The 
CHARLS team performs weekly quality control checks, 
ensuring the stability of sample analysis during the study 
period. Detailed analytical methods, laboratory coeffi-
cients of variation, and upper detection limits have been 
reported in previous studies [25].

The calculation methods for IR surrogates and CumIR 
surrogates were shown in Table 1 [12–15, 20–22].

Outcome determination
The primary outcome in this study was incident stroke, 
which was assessed based on questionnaires from the 
third and fourth waves. Participants were asked, “Have 
you been diagnosed with stroke by a doctor?” and 
responded with “Yes” or “No.” A response of “Yes” indi-
cated a stroke diagnosis.

Missing data assessment
In this study, the total missing data accounted for 1.91% 
of the study population, with the highest missing value 
being 34 (supplementary Table 1). Given the relatively 
low proportion of missing data, all analyses were per-
formed on the original dataset. Data analysis was con-
ducted between October and November 2024.

Statistical analysis
A two-tailed significance level of 5% was used for all 
statistical tests. Data analysis was conducted using R 
language (version 4.2.1) and Empower(R) (version 4.2). 
Baseline characteristics of the study population are pre-
sented as frequencies (percentages), mean ± standard 
deviation, or median and interquartile range, with appro-
priate statistical tests selected based on the nature of the 
data.
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Fig. 1 Flow chart of study participants

 



Page 5 of 13Hong et al. Lipids in Health and Disease          (2025) 24:158 

Cox regression models were used to estimate the mul-
tivariable-adjusted hazard ratios (HRs) and 95% confi-
dence intervals for stroke associated with IR surrogates 
and CumIR surrogates. Given the large differences in the 
units of various IR surrogates and CumIR surrogates, we 
chose to assess the association between the quartiles of 
these surrogates and stroke risk for easier comparison 
of results. Following the STROBE guidelines, a stepwise 
adjustment approach was applied for model building 
[26]. To minimize the impact of collinearity, the compo-
nents of the IR surrogates and potential collinear covari-
ates (supplementary Tables 2–9) were excluded from the 
models [27].

Three adjusted models were constructed for data analy-
sis: Model I adjusted for basic demographic characteris-
tics; Model II further adjusted for potential confounders 
including lifestyle factors and comorbidities; Model III, 
the final model, adjusted for all covariates while exclud-
ing those covariates with high collinearity.

Receiver operating characteristic (ROC) analysis was 
applied to assess the predictive value of IR surrogates and 
their cumulative exposure for stroke events, calculating 
the corresponding area under the curve, sensitivity, spec-
ificity, and optimal threshold. Differences in area under 
the curve values were compared using the DeLong test 
[28].

Sensitivity analyses

(1) Stratified analyses by age and gender were performed 
to assess the associations mentioned above, with 
likelihood ratio tests to detect potential differences 
across populations.

(2) To minimize the impact of medication on the 
results [29], we excluded participants using 
antihypertensive, antidiabetic, or lipid-lowering 
medications at baseline.

(3) Multiple imputation was applied to handle missing 
data [30], and multivariable Cox regression models 
were run on the imputed datasets.

(4) To reduce the influence of cardiovascular disease 
on stroke incidence [31], the analysis was repeated 
excluding individuals with cardiovascular disease.

(5) To minimize the potential impact of altered insulin 
secretion patterns in diabetic patients on the 
measurement of IR [32], the analysis was repeated 
for non-diabetic participants at baseline.

(6) Considering potential reverse causality, the analysis 
was repeated excluding participants diagnosed with 
stroke in the third wave survey.

Results
Study participants
A total of 4,669 participants with complete follow-up data 
were included in this study, with a mean age of 59 years 
and a male-to-female ratio of 0.82:1. During a median 
follow-up of 6 years, 347 new stroke events (7.43%) 
were recorded. Grouping participants by the quartiles of 
CumIR surrogates revealed a progressive increase in the 
stroke incidence for CumTyG index, CumTG/HDL-C 
ratio, and CumMetS-IR, while the stroke incidence for 
CumeGDR decreased with increasing quartiles (Fig.  2). 
Notably, the stroke incidence in the highest quartiles of 
CumTyG index, CumTG/HDL-C ratio, and CumMetS-IR 
was 9.67%, 9.93%, 10.45%, respectively, while the lowest 
quartile of CumeGDR had a stroke incidence of 13.02%, 
suggesting that lower CumeGDR was associated with a 
higher stroke risk.

Table 2 shows the baseline characteristics of the study 
population, comparing those who had a stroke during 
follow-up with those who did not. Typically, patients who 
experienced a future stroke were older at the time of the 
baseline survey. They were also more likely to be over-
weight or obese, have poorer insulin resistance status, 
have more underlying diseases, and exhibit higher levels 
of blood pressure, blood uric acid, blood glucose, and lip-
ids other than HDL-C.

Table 1 Calculation method of IR surrogates and CumIR surrogates
Calculation method Reference

TyG index TyG index = ln [TG (mg/dL) × FPG (mg/dL)/2] [12]
TG/HDL-C ratio TG/HDL-C ratio = TG (mg/dL) / HDL-C (mg/dL) [13]
MetS-IR MetS-IR = Ln [(2 × FPG (mg/dL)) + fasting TG (mg/dL)] × BMI (kg/m²) / (Ln [HDL-C (mg/dL)]). [14]
eGDR eGDR = 21.158 − (0.09 × WC) − (3.407 × hypertension) − (0.551 × HbA1c) [WC (cm), hypertension 

(yes = 1/no = 0), and HbA1c (%)].
[15]

CumTyG index CumTyG index = (TyG index2012 + TyGindex2015)/2* time (2012 − 2015) [20]
CumTG/HDL-C ratio CumTG/HDL-C ratio = (TG/HDL-C ratio2012 + TG/HDL-C ratio2015)/2* time (2012 − 2015)
CumMetS-IR CumMetS-IR = (MetS-IR2012 + MetS-IR2015)/2* time (2012 − 2015) [21]
CumeGDR CumeGDR = (eGDR2012 + eGDR2015)/2* time (2012 − 2015) [22]
Abbreviations: IR: insulin resistance; CumIR: cumulative insulin resistance; TyG: triglyceride-glucose; TG/HDL-C: triglyceride to high-density lipoprotein cholesterol; 
MetS-IR: metabolic score for insulin resistance; eGDR: estimated glucose disposal rate; CumTyG: cumulative triglyceride-glucose; CumMetS-IR: cumulative metabolic 
score for insulin resistance; CumTG/HDL-C: cumulative triglyceride to high-density lipoprotein cholesterol; CumeGDR: cumulative estimated glucose disposal rate
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Association between baseline IR surrogates quartiles and 
stroke
In the three adjusted multivariable models, higher levels 
of TyG index, TG/HDL-C ratio, MetS-IR, and lower lev-
els of eGDR were significantly associated with a higher 
risk of stroke (supplementary Table 10). Among these, 
the lowest quartile of eGDR had the highest HR for 
stroke, followed by the highest quartile of MetS-IR, TG/
HDL-C ratio, and TyG index (Model III: HR2.42 vs. 1.86 
vs. 1.59 vs. 1.55).

Association between CumIR surrogates quartiles and 
stroke
Supplementary Fig.  1 shows the histogram distribution 
of CumIR surrogates and the pairwise correlation coeffi-
cients between CumIR surrogates. The correlation matrix 
revealed that CumeGDR was negatively correlated with 
the other three CumIR surrogates.

As with baseline IR surrogates, the association between 
CumIR surrogates’ quartiles and stroke showed simi-
lar results across all models (Table  3). Higher levels of 
CumTyG index, CumTG/HDL-C ratio, CumMetS-IR, 
and lower levels of CumeGDR were significantly associ-
ated with increased stroke risk. Specifically, the lowest 
quartile of CumeGDR had the highest HR for stroke, fol-
lowed by the highest quartiles of CumMetS-IR, CumTG/
HDL-C ratio, and CumTyG index (Model III: HR3.57 
vs. 1.72 vs. 1.61 vs. 1.48). Notably, compared to baseline 
eGDR, CumeGDR showed a higher HR for stroke.

ROC analysis for IR surrogates and CumIR surrogates in 
predicting stroke
Figure 3 shows the ROC analysis for baseline IR surro-
gates and CumIR surrogates in predicting stroke events. 
Among baseline IR surrogates, eGDR showed the highest 
accuracy for predicting stroke, with an optimal threshold 
of 9.5555. For CumIR surrogates, CumeGDR demon-
strated the highest accuracy for predicting stroke events, 
with an optimal threshold of 23.7991, outperforming 
CumTyG index, CumTG/HDL-C ratio, and CumMetS-IR 
(Table 4).

Sensitivity analysis
In the first sensitivity analysis, we found that the asso-
ciation between CumIR surrogates and stroke did not 
differ by age or gender (supplementary Table 11, all 
P-interaction > 0.05). In the second sensitivity analysis, 
we excluded participants using antihypertensive, anti-
diabetic, or lipid-lowering medications, and the results 
remained consistent with the main analysis (sensitivity 
analysis 2: supplementary Tables 12 and 13). After con-
ducting multiple imputation (sensitivity analysis 3), the 
results were similar to the main analysis (supplementary 
Table 14). Repeating the analysis after excluding partici-
pants with cardiovascular disease (sensitivity analysis 4: 
supplementary Tables 15 and 16) and diabetes (sensitiv-
ity analysis 5: supplementary Tables 17 and 18) did not 
lead to any significant changes in the results. Finally, after 
excluding participants diagnosed with stroke in the third 

Fig. 2 Stroke incidence in the study population according to CumIR quartile groupings. CumIR: Cumulative insulin resistance; CumTyG: cumulative 
triglyceride-glucose; CumMetS-IR: cumulative metabolic score for insulin resistance; CumTG/HDL-C: cumulative triglyceride to high-density lipoprotein 
cholesterol; CumeGDR: cumulative estimated glucose disposal rate; CumIR: cumulative insulin resistance
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Table 2 Summary of baseline characteristics of the study population according to occurrence of stroke
Total population Non-stroke Stroke P-value

No. of subjects 4,669 4,322 347
Age, years 58.99 (8.69) 58.82 (8.67) 61.12 (8.61) < 0.001
Height, m 1.58 (0.08) 1.58 (0.08) 1.58 (0.09) 0.519
Weight, kg 59.28 (11.42) 59.06 (11.29) 61.97 (12.64) < 0.001
BMI, kg/m2 23.71 (3.92) 23.62 (3.83) 24.75 (4.81) < 0.001
WC, cm 84.64 (12.43) 84.35 (12.38) 88.19 (12.48) < 0.001
SBP, mmHg 128.61 (20.77) 127.88 (20.41) 137.73 (23.06) < 0.001
DBP, mmHg 75.08 (11.96) 74.74 (11.83) 79.32 (12.81) < 0.001
FPG, mmol/L 102.42 (94.86-111.96) 102.24 (94.68–111.60) 104.94 (96.30-118.08) < 0.001
HbA1c, % 5.29 (0.80) 5.28 (0.79) 5.42 (0.94) 0.002
Cr, mg/dL 0.75 (0.64–0.86) 0.75 (0.64–0.86) 0.75 (0.66–0.88) 0.278
UA, mg/dL 4.20 (3.51–5.03) 4.20 (3.51–5.02) 4.26 (3.55–5.21) 0.177
TC, mg/dL 191.37 (168.17–216.50) 190.98 (167.78-216.11) 196.39 (171.84-220.17) 0.041
TG, mg/dL 104.43 (74.34-152.22) 103.55 (73.45-150.45) 114.17 (84.96-171.25) < 0.001
HDL-C, mg/dL 49.10 (40.59–59.92) 49.48 (40.59–60.31) 46.39 (39.05–55.28) < 0.001
LDL-C, mg/dL 115.21 (93.94-137.63) 114.82 (93.94-137.63) 118.69 (94.72-140.53) 0.076
TyG index 8.68 (0.66) 8.67 (0.65) 8.85 (0.68) < 0.001
TG/HDL-C ratio 2.11 (1.31–3.56) 2.08 (1.29–3.51) 2.43 (1.61–4.09) < 0.001
MetS-IR 34.70 (29.98–40.51) 34.45 (29.84–40.30) 36.85 (31.86–43.42) < 0.001
eGDR 9.85 (7.16–11.07) 9.97 (7.27–11.13) 7.53 (6.43–10.29) < 0.001
Gender 0.490
 Male 2097 (44.91%) 1935 (44.77%) 162 (46.69%)
 Female 2572 (55.09%) 2387 (55.23%) 185 (53.31%)
Marital status 0.005
 Married 4141 (88.69%) 3849 (89.06%) 292 (84.15%)
 Other 528 (11.31%) 473 (10.94%) 55 (15.85%)
Living place 0.283
 Rural 3107 (66.55%) 2867 (66.34%) 240 (69.16%)
 Urban 1562 (33.45%) 1455 (33.66%) 107 (30.84%)
Education, n (%) 0.804
 Below primary 2244 (48.07%) 2074 (48.00%) 170 (48.99%)
 Primary schools 1062 (22.75%) 979 (22.66%) 83 (23.92%)
 Middle school 932 (19.97%) 866 (20.04%) 66 (19.02%)
 High school and above 430 (9.21%) 402 (9.30%) 28 (8.07%)
Drinking status 0.255
 No 3127 (66.97%) 2885 (66.75%) 242 (69.74%)
 Yes 1542 (33.03%) 1437 (33.25%) 105 (30.26%)
Smoking status 0.901
 No 3290 (70.60%) 3044 (70.58%) 246 (70.89%)
 Yes 1370 (29.40%) 1269 (29.42%) 101 (29.11%)
Hypertension < 0.001
 No 2753 (58.96%) 2625 (60.74%) 128 (36.89%)
 Yes 1916 (41.04%) 1697 (39.26%) 219 (63.11%)
Diabetes < 0.001
 No 3940 (84.39%) 3670 (84.91%) 270 (77.81%)
 Yes 729 (15.61%) 652 (15.09%) 77 (22.19%)
Heart disease < 0.001
 No 4089 (87.92%) 3818 (88.69%) 271 (78.32%)
 Yes 562 (12.08%) 487 (11.31%) 75 (21.68%)
Values were expressed as mean (standard deviation) or medians (quartile interval) or n (%). Mann-Whitney U, Student’s t test, or chi-square test were used for 
comparisons between groups

Abbreviations: BMI: body mass index; WC: waist circumference; SBP: systolic blood pressure; DBP: diastolic blood pressure; FPG: fasting plasma glucose; HbA1c: 
haemoglobin A1c; Cr: creatinine; UA: uric acid; HDL-C: high‐density lipoprotein‐cholesterol; LDL‐C: low‐density lipoprotein‐cholesterol; TC: total cholesterol; 
TG: triglycerides; TyG: triglyceride-glucose; TG/HDL-C: triglyceride to high-density lipoprotein cholesterol; MetS-IR: metabolic score for insulin resistance; eGDR: 
estimated glucose disposal rate
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wave survey (sensitivity analysis 6: supplementary Tables 
19 and 20), the findings remained highly consistent.

Discussion
Based on the CHARLS national prospective cohort study, 
we found that the cumulative exposure of IR surrogates—
TyG index, TG/HDL-C ratio, MetS-IR, and eGDR—over 
time is associated with the incidence of stroke. Among 
these, CumeGDR appears to provide additional risk 
stratification and is more accurate for predicting stroke 
events. From a primary prevention perspective, we rec-
ommend including the IR surrogate eGDR as a key factor 
in stroke monitoring.

As global populations age, stroke is becoming an 
increasingly common condition. By 2050, the absolute 
number of stroke-related deaths worldwide is expected 
to reach 9.7  million, placing a heavy burden on fami-
lies and public health systems [1, 33]. Previous studies 

have shown that insulin resistance (IR) is an important 
risk factor for stroke and that there is a causal relation-
ship between the two [7, 34–36]. Numerous studies have 
evaluated various IR surrogates for stroke risk assess-
ment, demonstrating the utility of these surrogates in 
real-world settings [37–41]. However, a systematic com-
parative analysis of IR surrogates for stroke risk assess-
ment remains lacking. It is important to note that in a 
recent longitudinal study based in rural China, Zhao et 
al. used the TyG index, visceral adiposity index (VAI), 
lipid accumulation product (LAP), and Chinese VAI 
(CVAI) as surrogate IR indices to compare their effective-
ness in stroke risk assessment [41]. Their results showed 
that all these surrogates were independently associated 
with stroke risk, with TyG index providing the most 
informative risk assessment (each increase in standard 
deviation). It should be noted that, CVAI, VAI, and LAP 
are rarely classified as IR surrogate indices, and they are 
more appropriately classified as obesity indices. Overall, 
the TyG index has good application potential as an IR 
alternative index in stroke risk assessment. In the cur-
rent study, we systematically evaluated and compared 
the baseline IR surrogates—TyG index, TG/HDL-C ratio, 
MetS-IR, and eGDR—and concluded that baseline eGDR 
had the strongest association with stroke, making it the 
most suitable for early stroke risk assessment.

In addition to comparing baseline IR surrogates for 
stroke risk, our study also investigated and compared 
the relationship between the cumulative exposure of IR 
surrogates over time and incident stroke—a relationship 
that has not been systematically examined before. Cumu-
lative exposure is a new concept used in the analysis of 
repeated measures data, reflecting the sustained intensity 
of exposure to a given parameter over a specified period 
[18–20]. Several recent studies have explored the asso-
ciation between individual cumulative IR surrogates such 
as CumTyG index, CumMetS-IR, and CumeGDR with 
stroke risk. Specifically, studies from the Kailuan cohort 
reported HRs of 1.30–1.35 for high CumTyG index and 
1.70 for high CumMetS-IR in relation to stroke risk [42, 
43]. Our findings are consistent with these results, with 
CumMetS-IR showing a slightly stronger association 
with stroke risk compared to CumTyG index. Regarding 
the association between CumeGDR and stroke, a recent 
study by Yao et al. reported findings where the HRs asso-
ciated with stroke across CumeGDR quintiles were Q1:1, 
Q2:0.78, Q3:0.78, Q4:0.43, and Q5:0.37, respectively [22]; 
these recalculated results align with our findings. Com-
pared to previous studies that individually analyzed these 
IR surrogates [21, 22, 42, 43], our study has the advantage 
of systematically evaluating the cumulative exposure of 
multiple IR surrogates in a homogeneous study popula-
tion, including CumTG/HDL-C ratio. We used quartiles 
for group categorization and calculated the HRs, which 

Table 3 Cox regression model analyzes the association between 
CumIR surrogates and stroke

HR (95%CI)
Model I Model II Model III

CumTyG index 
quartiles
 Q1 1.0 1.0 1.0
 Q2 1.47 (1.05, 2.05) 1.43 (1.02, 2.00) 1.31 (0.93, 1.84)
 Q3 1.73 (1.24, 2.41) 1.62 (1.16, 2.27) 1.38 (0.98, 1.93)
 Q4 2.11 (1.53, 2.91) 1.84 (1.31, 2.59) 1.48 (1.05, 2.10)
CumTG/HDL-C 
ratio quartiles
 Q1 1.0 1.0 1.0
 Q2 1.41 (1.01, 1.98) 1.38 (0.98, 1.93) 1.28 (0.91, 1.80)
 Q3 1.63 (1.17, 2.26) 1.55 (1.11, 2.16) 1.31 (0.93, 1.83)
 Q4 2.17 (1.58, 2.98) 1.91 (1.38, 2.65) 1.61 (1.15, 2.24)
CumMetS-IR 
quartiles
 Q1 1.0 1.0 1.0
 Q2 1.38 (0.98, 1.95) 1.37 (0.97, 1.94) 1.30 (0.92, 1.84)
 Q3 1.93 (1.38, 2.69) 1.83 (1.31, 2.56) 1.57 (1.11, 2.21)
 Q4 2.57 (1.86, 3.55) 2.24 (1.61, 3.13) 1.72 (1.21, 2.43)
CumeGDR 
quartiles
 Q4 1.0 1.0 1.0
 Q3 2.25 (1.45, 3.49) 2.28 (1.46, 3.56) 2.10 (1.34, 3.28)
 Q2 3.47 (2.30, 5.26) 3.43 (2.25, 5.22) 2.79 (1.79, 4.34)
 Q1 5.27 (3.53, 7.86) 4.91 (3.25, 7.43) 3.57 (2.25, 5.68)
Abbreviations: HR: hazard ratios; CI: confidence interval; CumIR: cumulative 
insulin resistance; CumTyG: cumulative triglyceride-glucose; CumMetS-IR: 
cumulative metabolic score for insulin resistance; CumTG/HDL-C: cumulative 
triglyceride to high-density lipoprotein cholesterol; CumeGDR: cumulative 
estimated glucose disposal rate;

Model I adjust for age, gender, education, marital status, living place

Model II adjust for age, gender, education, marital status, living place, smoking 
status, drinking status, diabetes, heart disease

Model III adjust for age, gender, education, marital status, living place, smoking 
status, drinking status, diabetes, heart disease, height, SBP, DBP, Cr, UA, LDL-C
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Fig. 3 ROC analysis curves of baseline IR surrogates and CumIR surrogates in predicting stroke. ROC: Receiver operating characteristic; IR: insulin resis-
tance; CumIR: Cumulative insulin resistance; CumTyG: cumulative triglyceride-glucose; CumMetS-IR: cumulative metabolic score for insulin resistance; 
CumTG/HDL-C: cumulative triglyceride to high-density lipoprotein cholesterol; CumeGDR: cumulative estimated glucose disposal rate; CumIR: cumula-
tive insulin resistance
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allowed us to identify CumeGDR as the most optimal 
surrogate for stroke risk assessment.

Regarding eGDR and its cumulative exposure being 
significantly superior to other IR surrogates in stroke 
risk assessment and event prediction, we attribute this 
advantage to eGDR’s incorporation of metabolic compo-
nents more closely linked to stroke. Compared to indi-
ces like the TyG index, TG/HDL-C ratio, and MetS-IR, 
the eGDR calculation incorporates more stable glyce-
mic parameters such as HbA1c [44] and central obesity 
indicator WC, while additionally integrating hyperten-
sion– a critical risk factor for cerebrovascular and car-
diovascular diseases [45]. From the perspective of stroke 
risk factors, blood pressure, blood glucose, and obesity 
all contribute significantly to stroke, whereas elevated 
cholesterol levels typically play a lesser role [46, 47]. 
Notably, in the context of blood glucose measurement, 
a single FPG measurement often exhibits high within-
individual variability, making it a less-than-ideal indica-
tor for reflecting chronic hyperglycemia; by contrast, 
HbA1c, as an integrated measure of blood glucose con-
centration, demonstrates superior temporal stability at 
the individual level [44, 48]. According to the study by 
Selvin et al., a multivariable model incorporating only 
FPG revealed associations similar to those observed for 
HbA1c-Stroke, yet the effect size of FPG was signifi-
cantly smaller [46]. Regarding obesity assessment, prior 
research evidence confirms that central obesity contrib-
utes more substantially to stroke risk than general obe-
sity [49, 50]. In the Atherosclerosis Risk in Communities 
study, Mozafar et al. employed targeted maximum likeli-
hood estimation to compare the impacts of BMI and cen-
tral obesity on stroke risk in individuals with and without 
diabetes. After adjusting for confounders, their findings 
revealed that the relative risk for stroke associated with 
BMI ranged from 1.04 to 1.11, whereas the relative risk 
associated with central obesity ranged from 1.10 to 1.15 
[49]. Another study from Northeast China focusing on 

a middle-aged and elderly population reported compa-
rable findings: they demonstrated that obesity assessed 
via BMI was associated with an odds ratio of 1.79 for 
stroke, while central obesity evaluated using WC showed 
an odds ratio of 1.94 [50]. Finally, compared to the TyG 
index, TG/HDL-C ratio, and MetS-IR, eGDR addition-
ally incorporates hypertension as an evaluation factor, 
which may represent the most critical reason why eGDR 
significantly outperforms other IR surrogates in stroke 
risk assessment. As is well-established, hypertension 
represents the most important risk factor for stroke (far 
exceeding elevated LDL-C, hyperglycemia, and obesity 
in impact), and serves as the primary driver of the cur-
rent and future increase in stroke-related disease burden 
[47, 51]. According to global stroke risk factor analysis 
data, approximately 39% of stroke events are attributable 
to hypertension [52]. In conclusion, we propose that the 
significant advantage of eGDR and its cumulative expo-
sure in stroke risk assessment over other IR surrogates 
may primarily stem from the fact that the components of 
eGDR play a more critical role in promoting stroke risk. 
Furthermore, when multiple metabolic factors co-accu-
mulate, the risk of stroke incidence is further elevated 
[47, 51, 53].

Our study has important implications for public health 
and clinical practice. First, given the significant patho-
genic role of IR in stroke, we believe it is essential to 
incorporate IR assessments into stroke clinical practice, 
particularly for middle-aged and older populations [1, 
7, 8]. Despite the availability of multiple methods for 
assessing IR [9–15], for primary prevention in the gen-
eral population, IR surrogates remain the most suitable 
due to their simplicity, reproducibility, and wide applica-
bility [16]. Based on our findings, we recommend eGDR 
as the optimal IR surrogate for stroke monitoring. From 
a data-driven perspective, CumeGDR incorporates both 
baseline eGDR values and longitudinal changes dur-
ing follow-up. It not only preserves the predictive value 

Table 4 ROC analysis for IR surrogates and CumIR surrogates in predicting stroke
AUC 95%CI low 95%CI upp Best threshold Specificity Sensitivity

TyG index* 0.5761 0.5458 0.6063 8.2810 0.2957 0.8242
TG/HDL-C ratio* 0.5771 0.5474 0.6067 1.6682 0.3829 0.7406
MetS-IR* 0.5925 0.5619 0.6231 38.1325 0.6768 0.4640
eGDR 0.6541 0.6246 0.6835 9.5555 0.5493 0.6945
CumTyG index† 0.5772 0.5463 0.6081 26.5597 0.6784 0.4380
CumTG/HDL-C ratio† 0.5815 0.5511 0.6118 8.5673 0.6411 0.4784
CumMetS-IR† 0.5878 0.5571 0.6184 104.1542 0.5025 0.6311
CumeGDR 0.6706 0.6427 0.6984 23.7991 0.6553 0.6110
Abbreviations: ROC: receiver-operating characteristic curve; AUC: area under the ROC curve; CI: confidence interval; TyG: triglyceride-glucose; TG/HDL-C: triglyceride 
to high-density lipoprotein cholesterol; MetS-IR: metabolic score for insulin resistance; eGDR: estimated glucose disposal rate; CumTyG: cumulative triglyceride-
glucose; CumMetS-IR: cumulative metabolic score for insulin resistance; CumTG/HDL-C: cumulative triglyceride to high-density lipoprotein cholesterol; CumeGDR: 
cumulative estimated glucose disposal rate; CumIR: cumulative insulin resistance

*P < 0.05 compared with eGDR (Delong test)
†P < 0.05 compared with CumeGDR (Delong test)
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of eGDR for stroke risk assessment but also provides 
more risk warnings and predictive information com-
pared to baseline eGDR alone. Therefore, theoretically, 
maintaining lower CumeGDR levels during follow-up 
may help control stroke risk. From another perspective, 
for the middle-aged and elderly populations in China, 
whether undergoing single or multiple health assess-
ments, focusing on eGDR and CumeGDR can provide 
effective prediction and risk evaluation for future stroke 
events. Considering the significant advantages of eGDR 
and CumeGDR in stroke assessment—along with their 
simplicity, convenience, and cost-effectiveness—they are 
highly suitable for widespread use. Based on our findings, 
we recommend a baseline eGDR threshold of 9.5555 for 
individuals undergoing single-time health checks. For 
those who undergo annual checks, we recommend main-
taining eGDR below 9.5555 and limiting the cumulative 
exposure to eGDR over three years to 23.7991. For the 
control of eGDR and its cumulative exposure levels, we 
believe that appropriate lifestyle interventions and the 
application of medications may be significantly helpful [2, 
54–56]. This is because lifestyle interventions and drug 
treatments significantly improve metabolism, which may 
lead to a reduction in eGDR and its cumulative exposure 
levels and thus lower the risk of stroke. When an indi-
vidual exceeds the threshold for eGDR and its cumulative 
exposure, implementing the following clinical actions 
may be beneficial: (1) Healthy Diet: Adopt a balanced diet 
emphasizing vegetables, fruits, whole grains, and low-fat 
dairy products while reducing intake of saturated fats, 
trans fats, cholesterol, and salt. Avoid sugary beverages 
and processed foods, and stay adequately hydrated by 
drinking moderate amounts of water [57, 58]. (2) Mod-
erate Exercise: Engage in activities such as brisk walking, 
jogging, swimming, or cycling, combined with strength 
training to enhance muscle strength [2, 59]. (3) Smoking 
Cessation and Alcohol Moderation: Quitting smoking 
and limiting alcohol consumption significantly improve 
metabolic parameters and are among the critical mea-
sures for stroke prevention [2, 60]. (4) Management of 
blood pressure, blood glucose, lipids, and weight: these 
indicators can be controlled through a combination of 
lifestyle modifications and pharmacotherapy interven-
tions [2, 54–56]. However, whether lifestyle interventions 
or drug therapies (e.g., hypoglycemic, antihypertensive, 
or statin medications) are suitable for specific CumeGDR 
thresholds cannot be determined in the current study. 
This issue still requires further interventional research for 
validation. In addition to its direct application in stroke 
prevention, the comparative findings of the current study 
can also serve as a valuable reference and guide for future 
related research. Furthermore, these findings offer valu-
able resources for future model development and out-
come validation across other ethnic populations.

Study strengths and limitations
The strengths of this study include the following: (1) This 
study evaluated for the first time the association between 
CumTG/HDL-C ratio and stroke. (2) In terms of inno-
vation, this study systematically analyze the effects of 
various CumIR surrogates on stroke, providing crucial 
research data for primary stroke prevention. (3) From a 
clinical perspective, this study provides both baseline and 
cumulative exposure data, which intuitively illustrates 
the importance of controlling cumulative IR exposure 
and offers significant threshold recommendations. This 
provides a direct and easily understandable approach for 
primary stroke prevention in middle-aged and elderly 
populations. (4) In terms of result robustness, the study 
performed six different sensitivity analyses, with highly 
consistent findings.

Similarly, there are certain limitations of the current 
study that need to be reported: (1) As the data in this 
study were based on the CHARLS registry questionnaire, 
where stroke diagnoses relied on self-reported informa-
tion from participants and medical diagnoses, there may 
be recall bias, potentially leading to misclassification of 
some participants [61]. However, according to the latest 
evidence from repeated checks in the Health and Retire-
ment Study, Glymour et al. suggested that misreporting 
of stroke is typically non-systematic, and the potential for 
misclassification bias is minimal [62]. (2) While the inci-
dence of stroke increases with age, the increasing trend 
of stroke in younger populations also requires attention 
[1, 63]. The current study’s findings are applicable only to 
middle-aged and elderly populations, and future research 
should further explore the role of CumIR surrogates in 
younger populations. (3) Although the CHARLS study is 
prospective, observational studies do not involve active 
intervention protocols for the study population [64]; 
therefore, this study cannot assess the impact of inter-
ventions on improving stroke risk associated with CumIR 
surrogates. (4) It is unavoidable that a large propor-
tion of participants with missing blood parameters were 
excluded from the analysis, which led to a relative reduc-
tion in sample size. (5) Stroke is a multifactorial, complex 
disease, and although the current analysis accounted for 
many confounding factors, there may still be unmeasured 
or unconsidered confounders [65].

Conclusions
In this national cohort study, we found that, compared 
to CumTyG index, CumTG/HDL-C ratio, and Cum-
MetS-IR, cumulative exposure to eGDR offers signifi-
cant advantages in stroke risk assessment and prediction 
in middle-aged and elderly populations. From a primary 
prevention perspective, we recommend incorporating 
eGDR as an IR surrogate for stroke monitoring.
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