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Abstract
Background and aims Low muscle mass (LMM) is a critical complication in patients with obesity and diabetes, 
exacerbating metabolic and cardiovascular risks. Novel obesity indices, such as the body roundness index (BRI), 
conicity index, and relative fat mass, have shown promise for assessing body composition. This study aimed to 
investigate the associations of these indices with LMM and to develop machine learning models for accurate and 
accessible LMM prediction.

Method Data from NHANES 2011–2018 (n = 2,176) were analyzed. Obesity was defined by body fat percentage, 
and LMM was determined using skeletal muscle mass index thresholds adjusted for BMI. Predictive models were 
developed using logistic regression, random forest, and other algorithms, with feature selection via LASSO regression. 
Validation included NHANES 2005–2006 data (n = 310). Model performance was evaluated using AUROC, Brier scores, 
and SHapley Additive exPlanations (SHAP) for feature importance.

Results BRI was independently associated with LMM (odds ratio 1.39, 95% confidence interval 1.22–1.58; P < 0.001). 
Eight features were included in the random forest model, which achieved excellent discrimination (AUROC = 0.721 in 
the validation set) and calibration (Brier score = 0.184). Feature importance analysis highlighted BRI, creatinine, race, 
age, and HbA1c as key contributors to the model’s predictive performance. SHAP analysis emphasized BRI’s role in 
predicting LMM. An online prediction tool was developed.

Conclusions BRI is a significant predictor of LMM in patients with obesity and diabetes. The random forest model 
demonstrated strong performance and offers a practical tool for early LMM detection, supporting clinical decision-
making and personalized interventions.
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Introduction
The global incidence of diabetes continues to rise, pro-
jected to increase from 415  million people in 2015 to 
642  million by 2040 [1]. Diabetes is primarily caused 
by insulin deficiency and resistance, which lead to sig-
nificant metabolic disturbances [2]. Sarcopenia—an age-
related decline in muscle mass and function—progressed 
at about 8% per decade after age 40 and 15–25% after 
age 70 [3, 4], affecting 7–29% of patients with diabetes 
[5, 6, 7]. Coexisting obesity further accelerates muscle 
and metabolic deterioration, elevating risks of disabil-
ity, cardiovascular disease, and mortality. Moreover, the 
decline in muscle mass worsens metabolic dysregula-
tion in patients with diabetes [8, 9, 10, 11]. Sarcopenic 
obesity (increased fat with reduced muscle mass) aggra-
vates hyperglycemia and insulin resistance, intensifying 
adverse health outcomes [12, 13, 14]. Although imaging 
techniques like dual-energy X-ray absorptiometry (DXA) 
and magnetic resonance imaging (MRI) accurately iden-
tify low muscle mass (LMM), their high cost and techni-
cal demands limit widespread application. Our previous 
studies have used biochemical markers such as the cre-
atinine/cystatin C ratio, sarcopenia index, and soluble 
interleukin-2 receptor to detect LMM or sarcopenia [15, 
16], yet clinically feasible tools remain scare in individu-
als with obesity and diabetes.

Recently, several novel obesity indices, including the 
body roundness index (BRI), conicity index (C-index), 
and relative fat mass (RFM), have emerged as enhanced 
measures of fat distribution and body composition [17, 
18, 19]. Thomas [20] et al. proposed BRI as an anthro-
pometric index associated with obesity, and the C-index 
provided insights into fat distribution, particularly 
abdominal fat accumulation [21]. RFM, which estimates 
total body fat percentage more accurately than body mass 
index (BMI), offers a better representation of fat distri-
bution [17]. Although these indices are closely linked to 
chronic diseases such as diabetes and cardiovascular dis-
ease [22, 23, 24], their usefulness in detecting low LMM 
among patients with obesity and diabetes has not been 
thoroughly investigated.

Therefore, this study aimed to explore the association 
between novel obesity indices and LMM in this high-
risk population. By leveraging multiple machine learning 
models, this study aimed to develop a practical predictive 
tool for early LMM detection, ultimately enhancing clini-
cal management and personalized treatment strategies 
for individuals with obesity and diabetes.

Materials and methods
Study population and design
Data for this analysis were drawn from the 2005–2006 
and 2011–2018 National Health and Nutrition Examina-
tion Survey (NHANES) datasets. The NHANES initiative 

aims to examine the health and nutrition of adults and 
children in the United States through interviews and 
physical examinations. The survey includes demographic, 
dietary, socioeconomic, and health-related questions. 
Approval for this study was provided by the Research 
Ethics Review Board of the National Center for Health 
Statistics and all participants provided written informed 
consent. Additional details are available at  h t t p  s : /  / w w w  . c  
d c .  g o v  / n c h  s /  n h a n e s / i n d e x . h t m.

This study was based on NHANES patient data 
between 2011 and 2018 (n = 78188). Patients with diabe-
tes were included in the study if they met one of the fol-
lowing criteria: Hemoglobin A1c (HbA1c) ≥ 6.5%, fasting 
glucose ≥ 7 mmol/L, or self-reported use of antidiabetic 
medication based on a questionnaire [25]. Obesity was 
defined as a total body fat percentage of ≥ 25% for men 
and ≥ 30% for women [26]. The following exclusion cri-
teria were applied to identify the final participants: (1) 
age < 40 or > 70 years; (2) not meeting the diagnostic 
criteria for diabetes and obesity; (3) missing DXA data; 
(4) missing waist circumference (WC), weight, or height 
data; (5) missing sex data; and (6) missing important 
covariate data, including drinking status, smoking status, 
hypertension, and medication use. External validation 
was performed using NHANES data from 2005 to 2006 
(n = 10348). The same inclusion and exclusion criteria 
were applied to this cohort, resulting in 310 participants 
in the external validation dataset. A flow diagram illus-
trating the inclusion process for both the development 
and external validation cohorts is displayed in Figure S1.

Measurements and definition of LMM
NHANES used a Hologic QDR-4500 fan-beam densi-
tometer (Hologic Inc., Bedford, MA, USA) to measure 
body composition using DXA. Appendicular skeletal 
muscle mass (ASM) was calculated as the total of the 
muscle mass in both the arms and legs. The Foundation 
for the National Institutes of Health recommends that 
ASM be adjusted for BMI when the skeletal muscle mass 
index (SMI) is used as a diagnostic metric for LMM. Men 
with an SMI < 0.789 and women with an SMI < 0.512 were 
classified as having LMM [27].

Variable estimation
Data on age, sex, race, height, weight, WC, BMI, blood 
pressure, smoking and drinking status, complete blood 
count, biochemical information, and medication use 
were obtained from the publicly available NHANES 
demographic and release datasets. Race was classified 
into five categories: Mexican American, other Hispanic, 
non-Hispanic white, non-Hispanic black, and other. BMI 
was calculated as weight divided by height squared (kg/
m²). Hypertension was defined as the average of two 
blood pressure readings released by the NHANES, with 

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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a mean systolic pressure > 140 mmHg or diastolic pres-
sure > 90 mmHg.

BRI, RFM, and C-index

BRI = 364.2 − 365.5 ×

√
1−

(
WC(m)

2π

)2

(0.5× height(m))2

; RFM (men) = 64 − 20 × height(m)
waist(m) ; RFM 

(women) = 76 − 20 × height(m)
waist(m) ;C-index = 

0.109−1WC (m) weight(kg)−1/2

height(m) .

Statistical analyses
Data normality was assessed using the Kolmogorov–
Smirnov test and Q-Q. Continuous variables with a 
normal distribution are presented as means ± standard 
deviations, whereas non-normally distributed variables 
are expressed as medians (interquartile ranges). Cat-
egorical variables are summarized as frequencies and 
percentages. Depending on distribution, continuous vari-
ables were compared with the independent samples t-test 
or Mann–Whitney U test. The chi-squared test or Fish-
er’s exact test was used to assess differences in categori-
cal variables. Weighted logistic regression was conducted 
to identify independent risk factors, with sample weights 
adjusted to the 4-year survey cycle (WTMEC4YR). All 
statistical analyses were performed in R software (ver-
sion 4.2.2), and statistical significance was set at P < 0.050 
(two-tailed).

Participants was randomly divided into training (70%) 
and validation (30%) subsets using the R function sample, 
with a fixed random seed (123) to ensure reproducibil-
ity. To address sample imbalance, the synthetic minor-
ity oversampling technique algorithm (SMOTE) was 
applied. SMOTE was applied exclusively to the training 
dataset. Model performance was subsequently evalu-
ated through 10-fold cross-validation to confirm that the 
synthetic data did not lead to systematic bias or inflated 
performance estimates. Missing data were imputed 
using the k-nearest neighbors approach (Table S1). To 
ensure robustness, we performed sensitivity analyses 
comparing the means of numerical variables before and 
after imputation, calculating the percentage difference 
between observed and imputed values (Table S2). Vari-
ables with P < 0.100 in univariate analysis were retained 
as candidates for multivariate analysis. Feature selection 
was carried out using the least absolute shrinkage and 
selection operator (LASSO). To identify the optimal pen-
alty parameter (λ), we employed 10-fold cross-validation 
using the cv.glmnet function (glmnet package). The one 
standard error rule (λ.1se) was then applied to balance 
model complexity and predictive performance, with the 
selected λ.1se subsequently used for feature selection. 

Multicollinearity was assessed via the variance inflation 
factor (VIF). Six machine learning methods—logistic 
regression, decision tree, support vector machine, ran-
dom forest, categorical boosting (CatBoost), and extreme 
gradient boosting (XGBoost)—were used to develop 
predictive models. Performance was evaluated using 
accuracy, precision, F1 score, recall, and area under the 
receiver operating characteristic (AUROC) curve. Cali-
bration curves were generated to assess the calibration 
performance of the predictive models and compare the 
relationship between the actual values and model predic-
tions. Decision curve analysis and Brier scores were used 
to evaluate the model fit.

Results
Characteristics of participants according to LMM status
The baseline characteristics of the final participants 
(n = 2,176) are presented in Table 1, with 21.3% of them 
having LMM. Weighted results showed that the median 
age of participants with LMM was 52.58 years (45.1% 
men); the median age of the participants with normal 
muscle mass (NMM) was 53 years (40.2% men). The 
median BRI and RFM values for the LMM and NMM 
groups were 9.11 vs. 6.73 and 45.01 vs. 38.24, respec-
tively, with significant differences (P < 0.010); the C-index 
medians were 1.01 and 1.08, with no significant differ-
ence (P = 0.086). Additionally, significant differences were 
observed between the LMM and NMM groups in several 
baseline characteristics, including BMI, white blood cell 
count, globulin, creatinine, HbA1c, SMI, total body fat 
percentage, race, and drinking status (P < 0.050).

Correlation between BRI, RFM, C-index, and LMM
We used logistic regression analysis to explore the asso-
ciation between BRI, RFM, C-index, and LMM. The ORs 
and 95% CIs were calculated to quantify this association 
(Fig.  1). BRI showed the strongest positive association 
with LMM (odds ratio [OR] 1.39, 95% confidence inter-
val [CI]: 1.22–1.58, P < 0.001). RFM also showed an asso-
ciation with LMM, although weaker (OR 1.07, 95% CI: 
1.02–1.11, P = 0.003). However, the correlation between 
the C-index and LMM was not significant (OR 0.33, 95% 
CI: 0.07–1.52, P = 0.151). Given the potential multicol-
linearity between the BRI, RFM, and C-index, the BRI, 
which had the strongest association with LMM, will be 
included in subsequent studies to clarify its role as a pre-
dictive variable for LMM.

Development and validation of predictive models
We performed a weighted univariate regression analy-
sis to identify independent factors significantly associ-
ated with LMM in patients with obesity and diabetes 
(Table 2). The results showed that higher WC, BMI, BRI, 
and alcohol consumption were independent risk factors 
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Table 1 Weighted characteristics of participants in study
Characteristic Normal muscle mass (n = 1713) Low muscle mass (n = 463) P-value
Age (years) 53.00 (48.00, 56.00) 52.58 (44.00, 55.00) 0.420
WC (cm) 113.00 (102.98, 124.30) 117.80 (108.50, 135.50) 0.067
BMI (kg/m2) 33.70 (29.20, 37.30) 37.80 (32.30, 43.70) < 0.001***

White blood cell count (109/L) 7.90 (6.70, 9.10) 8.30 (7.40, 9.40) 0.045*

Lymphocyte count (109/L) 2.20 (1.70, 2.70) 2.20 (2.00, 2.70) 0.146
Monocyte count (109/L) 0.60 (0.50, 0.70) 0.60 (0.50, 0.70) 0.551
Neutrophil count (109/L) 4.60 (3.70, 5.90) 5.05 (4.30, 6.00) 0.090
Hemoglobin (g/L) 14.40 (13.30, 15.40) 14.30 (13.20, 15.00) 0.473
Red cell distribution width (%) 13.50 (12.90, 14.10) 13.60 (13.20, 14.10) 0.411
Fasting glucose (mmol/L) 8.99 (7.11, 12.56) 7.12 (6.27, 9.63) 0.097
Albumin (g/L) 42.00 (40.00, 44.00) 41.00 (40.00, 44.00) 0.898
Globulin (g/L) 28.00 (26.00, 31.00) 29.00 (27.00, 33.00) 0.039*

Creatinine (umol/L) 74.26 (63.65, 90.17) 70.72 (61.88, 76.02) 0.005**

Uric acid (umol/L) 321.20 (255.80, 392.60) 327.10 (255.80, 379.58) 0.851
HbA1c (%) 7.20 (6.30, 8.90) 6.60 (6.10, 8.60) 0.017*

ALT (U/L) 25.00 (19.00, 37.00) 29.00 (23.00, 43.00) 0.070
AST (U/L) 25.00 (19.00, 30.00) 24.00 (20.00, 34.00) 0.749
ALP (U/L) 70.00 (57.00, 89.00) 72.00 (57.00, 91.00) 0.583
Low-density lipoprotein (mmol/L) 2.48 (1.94, 3.38) 2.87 (2.28, 4.03) 0.172
High-density lipoprotein (mmol/L) 1.14 (0.96, 1.29) 1.11 (0.98, 1.34) 0.628
Total cholesterol (mmol/L) 4.68 (3.88, 5.59) 4.60 (4.14, 5.87) 0.306
Triglyceride (mmol/L) 2.16 (1.21, 3.16) 1.67 (1.46, 2.36) 0.279
Systolic pressure (mmHg) 123.00 (113.00, 132.00) 123.00 (116.00, 138.00) 0.259
Diastolic pressure (mmHg) 74.00 (68.00, 80.00) 71.00 (67.00, 77.00) 0.198
SMI 0.80 (0.61, 0.92) 0.51 (0.49, 0.74) < 0.001***

Total body fat percent (%) 35.50 (30.50, 41.50) 41.80 (35.90, 46.20) < 0.001***

BRI 6.73 (5.43, 8.85) 9.11 (7.60, 10.99) < 0.001***

RFM 38.24 (32.13, 47.48) 45.01 (37.13, 49.41) 0.001**

C-index 1.08 (0.94, 1.25) 1.01 (0.81, 1.20) 0.086
Gender, n (%) 0.395
Female 940 (54.9) 277 (59.8)
Male 773 (45.1) 186 (40.2)
Race, n (%) 0.005**

Mexican American 227 (13.3) 142 (30.7)
Other Hispanic 168 (9.8) 80 (17.3)
Non-Hispanic White 574 (33.5) 161 (34.8)
Non-Hispanic Black 540 (31.5) 47 (10.2)
Other race 204 (11.9) 33 (7.1)
Drinking status, n (%) 0.046*

Drinker 629 (36.7) 123 (26.6)
Non-drinker 1084 (63.3) 340 (73.4)
Smoking status, n (%) 0.860
Smoker 917 (53.5) 252 (54.4)
Non-smoker 796 (46.5) 211 (45.6)
Use of insulin, n (%) 0.275
Yes 1185 (69.2) 348 (75.2)
No 528 (30.8) 115 (24.8)
Use of metformin, n (%) 0.882
Yes 1418 (87.4) 386 (87.1)
No 204 (12.6) 57 (12.9)
Data are presented as median (IQR), or n (%). Abbreviations: WC, Waist circumference; BMI, Body mass index; HbA1c, glycated hemoglobin; ALT, Alanine transaminase; 
AST, Alanine aminotransferase; ALP, Alkaline phosphatase; SMI, skeletal muscle mass index; BRI, body roundness index; RFM, relative fat mass; C-index, conicity 
index; IQR, interquartile range. * P < 0.05, ** P < 0.01, *** P < 0.001
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for LMM (P < 0.050). Additionally, non-Hispanic white, 
non-Hispanic black and other ethnic groups were nega-
tively associated with LMM, suggesting that these ethnic 
groups may have protective effects (P < 0.050). In terms 
of biochemical markers, elevated creatinine and HbA1c 
levels were independent protective factors against LMM 
(P < 0.050). Higher globulin levels were positively asso-
ciated with LMM; however, this relationship was not 
significant.

We further analyzed the independent factors for LMM 
identified in the univariate regression analysis (P < 0.100) 
[28]. BMI and WC were removed to avoid potential 

multicollinearity with the BRI. Additionally, based on 
clinical relevance and existing literature [29], age and sex 
were included in the model as covariates. We used the 
least absolute shrinkage and selection operator (LASSO) 
analysis to further filter the feature variables for LMM. 
The optimal penalty parameter (λ) was identified using 
the glmnet package. Variables with non-zero coefficients 
under the λ were retained. For categorical variables, 
dummy variables were encoded to ensure that different 
categories were accurately represented in the LASSO 
analysis. To minimize redundancy, we merge multiple 
dummy variables within the same category. Variables 

Fig. 1 Forest plot of BRI, RFM, and C-index with LMM. Abbreviations: OR, odds ratio; CI, confidence intervals; BRI, body roundness index; RFM, relative fat 
mass; C-index, conicity index; LMM, low muscle mass
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with the variance inflation factor (VIF) > 5 were consid-
ered to have significant multicollinearity. Eight nonzero 
feature variables were selected to construct a predictive 
model for LMM risk (Figure S2).

The dataset was randomly divided into training and 
validation sets at a 7:3 ratio. The baseline characteristics 
of the two sets are presented in Table S3, which demon-
strates no significant differences in key variables. This 
ensures the representativeness and generalizability of the 
model’s performance across datasets.

To ensure optimal performance for each machine 
learning model, we used Bayesian optimization to tune 
the key model parameters and conducted 10 iterations to 

identify the optimal parameter set (Table S4). Based on 
this, the final model was trained. The model performance 
was evaluated through 10-fold cross-validation on the 
internal training set. As shown in Fig. 2, the random for-
est demonstrated the highest clinical efficiency, achiev-
ing an area under the receiver operating characteristic 
(AUROC) of 0.994 (95% CI 0.992–0.995), while categori-
cal boosting (CatBoost) followed closely with an AUROC 
of 0.985 (95% CI 0.975–0.996).

A further evaluation of the stability and generalization 
ability of the six predictive models was conducted for the 
internal and external validation sets. With an AUROC 
of 0.980 (95% CI 0.970–0.990), the random forest model 
demonstrated the best clinical predictive performance in 
the internal validation set (Fig. 3). Table 3 illustrates that 
the random forest model achieved high accuracy, pre-
cision, recall, and F1 score in both validation sets. The 
model also exhibited superior calibration performance, 
with a Brier score of 0.071 for the internal set and 0.184 
for the external set (Figure S3, Figure S4). We further 
analyzed the net benefits of each model under different 
decision scenarios (Figure S5). The random forest model 
displayed higher net benefits across a broad range of 
thresholds, particularly in the 10–40% threshold prob-
ability range. Random forest showed the highest clinical 
predictive utility; therefore, it was selected as the opti-
mal model. The SHapley Additive exPlanations (SHAP) 
feature importance for the random forest model is illus-
trated in Fig. 4, where the features are ranked from high-
est to lowest based on their mean absolute SHAP values. 
The five most important features were BRI, age, race, cre-
atinine level, and HbA1c.

Risk category
Using the optimal threshold (0.305) derived from the ran-
dom forest model via Youden’s index, patients were strat-
ified into high-risk (> 0.305) and low-risk (≤ 0.305) groups 
(Table 4). In the low-risk group, the predicted risk values 
(14.38%) were closely aligned with the observed risk val-
ues (14.04%), demonstrating the model’s high predictive 
accuracy for this group. In the high-risk group, the pre-
dicted risk values (54.89%) were moderately higher than 
the observed risk values (43.17%), with a difference of 
11.72%. Despite this discrepancy, the model maintained 
good discriminatory power in distinguishing between 
the two groups. The observed difference in LMM risk 
between the high-risk and low-risk groups was statisti-
cally significant (P < 0.001). Subsequently, an online pre-
dictive calculator was developed to facilitate the clinical 
application of LMM diagnosis:  h t t p  s : /  / s a r  c o  p e n  i a d  i a g n  o s  
i s .  s h i  n y a p  p s  . i o  / L o  w M u s  c l  e M a s s D i a g n o s i s /.

Table 2 Weighted univariate analysis of variables with LMM
Variable OR 95%CI P value
Age (years) 0.965 0.897–1.039 0.335
Waist circumference (cm) 1.024 1.002–1.046 0.037*
BMI (kg/m2) 1.092 1.044–1.143 < 0.001***
White blood cell count (109/L) 1.072 0.963–1.194 0.196
Lymphocyte count (109/L) 1.286 0.832–1.986 0.251
Monocyte count (109/L) 1.787 0.309–10.341 0.509
Neutrophil count (109/L) 1.058 0.938–1.194 0.350
Hemoglobin (g/L) 0.914 0.717–1.165 0.460
Red blood cell distribution width (%) 1.004 0.786–1.282 0.977
Fasting glucose (mmol/L) 0.892 0.771–1.032 0.122
Albumin (g/L) 1.017 0.932–1.109 0.698
Globulin (g/L) 1.057 0.994–1.123 0.075
Creatinine (umol/L) 0.977 0.962–0.992 < 0.01**
Uric acid (umol/L) 1.000 0.997–1.004 0.829
HbA1c (%) 0.841 0.726–0.974 0.022*
ALT (U/L) 1.003 0.994–1.013 0.467
AST (U/L) 0.999 0.994–1.004 0.742
ALP (U/L) 1.005 0.994–1.016 0.370
Low-density lipoprotein (mmol/L) 1.376 0.869–2.178 0.169
High-density lipoprotein (mmol/L) 1.167 0.471–2.889 0.733
Total cholesterol (mmol/L) 1.025 0.927–1.133 0.627
Triglyceride (mmol/L) 0.895 0.780–1.028 0.115
Systolic pressure (mmHg) 1.009 0.995–1.022 0.194
Diastolic pressure (mmHg) 0.984 0.959–1.010 0.231
BRI 1.387 1.217–1.581 < 0.001***
Gender (female) 1.393 0.639–3.033 0.396
Race < 0.010**
Other Hispanic 0.620 0.222–1.731 0.352
Non-Hispanic White 0.381 0.160–0.904 0.030*
Non-Hispanic Black 0.124 0.043–0.359 < 0.001***
Other Race 0.204 0.064–0.651 < 0.01**
Drinking status (drinker) 1.778 1.006–3.144 0.048*
Smoking status (smoker) 0.932 0.421–2.064 0.860
Use of insulin (yes) 0.657 0.304–1.419 0.277
Use of metformin (yes) 1.023 0.754–1.388 0.882
Abbreviations: LMM, low muscle mass; WC, waist circumference; BMI, body 
mass index; HbA1c, glycated hemoglobin; ALT, alanine transaminase; AST, 
alanine aminotransferase; ALP, alkaline phosphatase; SMI, skeletal muscle mass 
index; BRI, body roundness index; RFM, relative fat mass; C-index, conicity 
index; IQR, interquartile range. * P < 0.05, ** P < 0.01, *** P < 0.001

https://sarcopeniadiagnosis.shinyapps.io/LowMuscleMassDiagnosis/
https://sarcopeniadiagnosis.shinyapps.io/LowMuscleMassDiagnosis/
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Discussion
The coexistence of diabetes and obesity is prevalent, and 
sarcopenia poses a serious complication in this popula-
tion. Prior research indicated that LMM may be a unify-
ing mechanism linking diabetes and obesity [8]. In this 
study, the prevalence of LMM in patients with obesity 
and diabetes reached 21.3%, emphasizing its substantial 
burden. Notably, while patients with LMM are gener-
ally thought to have a lower BMI, our study revealed that 
the LMM group had a significantly higher BMI than the 
NMM group. This finding aligns with a Chinese study 

showing that individuals who were overweight or obese 
with LMM had higher BMI than those without LMM 
[30]. The muscle mass deficit is likely masked by fat accu-
mulation, underscoring the limitations of BMI in assess-
ing LMM risk in populations with obesity.

This study is the first to explore the association between 
novel obesity indices and LMM in patients with obesity 
and we also developed an online predictive calculator for 
clinical application. These findings demonstrate a robust 
association between BRI and LMM, supporting BRI’s role 
as a reliable measure of visceral fat accumulation [20]. 

Fig. 2 Clinical diagnostic value of 6 machine learning models (10-fold cross-validation) in the training set. Abbreviations: AUROC, area under the receiver 
operating characteristic; XGBoost, extreme gradient boosting; CatBoost, categorical boosting; SVM, support vector machine
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Visceral fat accumulation can trigger chronic inflam-
mation and insulin resistance, potentially accelerating 
muscle loss [31, 32]. Although RFM, which estimates 
total body fat percentage [17], was also positively associ-
ated with LMM, the correlation was weaker, suggesting 
that visceral fat may exert a stronger influence. By con-
trast, the C-index, an indicator of fat distribution [21], 
which increased with abdominal fat, did not show a sig-
nificant association with LMM, indicating that visceral 
fat accumulation may be more important than overall fat 

distribution in the development of LMM among patients 
with obesity and diabetes.

In the external validation, random forest and extreme 
gradient boosting (XGBoost) models outperformed other 
machine learning algorithms, with AUROCs of 0.721 
(95%CI: 0.658–0.785) and 0.748 (95%CI: 0.689–0.808), 
respectively. The random forest model demonstrated 
outstanding recall and precision, reflecting strong dis-
crimination, accuracy, and generalization. Its F1 score 
was 0.56, possibly due to differences in the distribution 
and sample size of training and testing datasets. None-
theless, decision curve analysis showed a considerable 
net benefit for diagnosing LMM across several threshold 
probabilities, and the Brier score of 0.071 highlighted the 
model’s strong calibration. These results suggest that the 
random forest model can be a valuable diagnostic tool 
for LMM in patients with obesity and diabetes and may 
facilitate clinical decision-making.

The SHAP values further elucidate each variable’s role 
in the random forest model. BRI identified as the stron-
gest predictor, emphasizing its strong association with 
muscle loss. Creatinine levels are traditionally consid-
ered to be positively correlated with muscle mass, with 
higher levels typically indicating greater muscle mass 
[33]. Similarly, our analysis revealed that higher creati-
nine levels were negatively associated with the prevalence 
of LMM, suggesting a protective role in model. Age was 
also a key contributor, suggesting that advanced age is 
closely associated with an increased risk of LMM. Inter-
estingly, HbA1c displayed a negative association with 

Table 3 Key performance indicators of internal and external 
validation sets
Models Accuracy Precision Recall F1 score
Internal validation
Random Forest 0.96 0.93 0.89 0.91
CatBoost 0.92 0.88 0.78 0.82
SVM 0.89 0.73 0.83 0.78
XGBoost 0.87 0.65 0.91 0.76
Decision Tree 0.77 0.50 0.73 0.59
Logistic Regression 0.64 0.38 0.88 0.53
External validation
Random Forest 0.72 0.48 0.68 0.56
CatBoost 0.66 0.41 0.61 0.49
SVM 0.62 0.39 0.71 0.50
XGBoost 0.69 0.45 0.76 0.57
Decision Tree 0.67 0.39 0.42 0.40
Logistic Regression 0.69 0.46 0.73 0.56
Abbreviations: CatBoost, categorical boosting; SVM, support vector machine; 
XGBoost, extreme gradient boosting

Fig. 3 Receiver operating characteristic curve in internal and external validation sets. (A) Receiver operating characteristic curve in internal validation 
set. (B) Receiver operating characteristic curve in external validation set. Abbreviations: CatBoost, categorical boosting; SVM, support vector machine; 
XGBoost, extreme gradient boosting
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Table 4 Risk stratification of patients in the external validation cohort based on the random forest model
Risk group Patients(n = 310) Predicted risk Observed risk P value
Low risk (≤ 0.305) 171 14.38% 14.04% < 0.001
High risk (>0.305) 139 54.89% 43.17%

Fig. 4 Feature importance in terms of random forest model
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LMM, contrasting with prior evidence that links inad-
equate glycemic control to muscle loss. For example, a 
cross-sectional study of older adults in Brazil identified 
an association between increased blood glucose levels 
and reduced skeletal muscle mass [34]. Similarly, another 
study suggested that higher HbA1c levels are associated 
with an increased risk of LMM, suggesting that poor gly-
cemic control may accelerate muscle loss [35]. Although 
our analysis considered the use of metformin and insulin, 
we were unable to fully capture the presence or dosage of 
additional glucose-lowering agents. It is also noteworthy 
that individuals with LMM had a significantly higher BMI 
than those with normal muscle mass (37.80 vs. 33.70 kg/
m2, P < 0.001), which could lead to more aggressive phar-
macotherapy in clinical settings. Consistent with this 
possibility, fasting glucose levels were lower in the LMM 
group (7.12 vs. 8.99 mmol/L), suggesting intensified gly-
cemic management—even though this difference did not 
reach statistical significance (P < 0.100). Future longitu-
dinal studies with comprehensive medication records 
and treatment durations will be crucial for clarifying this 
complex relationship. Additional factors such as globulin 
levels, race, and sex, also shaped the model. For instance, 
higher globulin levels may indicate a better nutritional 
status, contributing to the maintenance of muscle mass. 
Research has suggested that lower globulin levels are 
linked to malnutrition and chronic inflammation [36, 
37]. Racial disparities may also affect muscle mass and 
metabolic health; African Americans, for instance, tend 
to have higher skeletal muscle mass than other ethnic 
groups [38]. Notably, the variables used in this model 
are relatively straightforward to assess in routine clinical 
practice, reinforcing its practical utility.

Prior research indicated that machine learning is effec-
tive for predicting LMM or sarcopenia. Kim et al., for 
instance, used ophthalmic examinations and demo-
graphic factors to predict sarcopenia with an AUROC of 
approximately 0.74 using XGBoost and logistic regres-
sion [39]. To our knowledge, this is the first study to 
construct a predictive model for LMM specifically in 
patients with obesity and diabetes. The random forest 
model demonstrated superior discrimination and cali-
bration, with significant differences in the prevalence of 
LMM between high-risk and low-risk groups (43.17% 
vs. 14.04%, P < 0.001). Notably, the predicted risk values 
in the high-risk and low-risk group (54.89% vs. 14.38%) 
were consistent with the observed trend, confirming the 
model’s utility in risk stratification. The high-risk group 
exhibited a 3.07-fold higher observed risk of LMM com-
pared to the low-risk group, highlighting its potential 
for guiding clinical decision-making. However, despite 
comparable baseline characteristics in the training and 
validation sets (P > 0.050, Table S3), the high-risk group 
showed an 11.7% overestimation of LMM risk (54.89% 

predicted vs. 43.17% observed). This discrepancy may 
be attributable to the relatively small size of the external 
validation cohort, which can amplify minor calibration 
errors, as well as uncounted factors (e.g., disease dura-
tion, medication dose) that may disproportionately affect 
the highest-risk subgroup. Crucially, the model’s overall 
discrimination remained robust, indicating that while the 
absolute predicted probabilities in the high-risk group 
may be inflated, its capacity to distinguish high-risk and 
low-risk patients was preserved.

Integrating practical muscle function assessments, 
such as handgrip strength or gait speed, with the LMM 
risk prediction model could streamline sarcopenia diag-
nosis. The cost-effective evaluations reduce reliance 
on advanced imaging like DXA or MRI, thus enhanc-
ing accessibility in low-resource settings without com-
promising diagnostic accuracy. Despite the promising 
findings of this study, it had some limitations. First, the 
external validation cohort, derived via temporal segmen-
tation of the same survey, is smaller than the develop-
ment cohort, which may limit statistical power. Although 
this approach provides initial evidence of generalizabil-
ity, larger and truly independent cohorts will be needed 
to robustly confirm external validity. Second, to pre-
serve simplicity and enhance generalizability, our model 
focused on a subset of key predictors, excluding factors 
such as physical activity and dietary intake. We acknowl-
edge their importance and plan to incorporate them in 
future large-scale external validation studies to further 
refine and validate the model. Finally, given the cross-sec-
tional design, establishing causal relationships remains 
challenging. Future longitudinal studies will be necessary 
to assess whether the identified risk factors truly predict 
LMM progression over time.

Conclusions
Our research has significant clinical implications, espe-
cially considering the difficulties in diagnosing LMM in 
patients with obesity and diabetes. The random forest 
model offers a practical and reliable method for predict-
ing LMM, providing clinicians with an evidence-based 
tool to guide early risk stratification and management 
strategies. Moreover, the web-based calculator presents a 
novel medium for clinical application and generalization 
of the predictive model.
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