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Abstract 

Background The prevalence of hyperuricemia (HUA) among Chinese children and adolescents is a significant public 
health concern. Triglyceride-glucose (TyG) is recognized as a reliable biomarker in predicting insulin resistance, a con-
dition associated with various metabolic disorders. Nevertheless, research on the association between TyG and its 
obesity-related indices with HUA among children and adolescents in China is limited.

Methods This study utilized data from the 2017 Chinese National Nutrition and Health Surveillance of Children 
and Lactating Mothers. TyG, TyG-BMI, TyG-WC, and TyG-WHtR were calculated based on participants’ fasting blood 
glucose, triglycerides, and measured height, weight, and waist circumference. Multivariable logistic regressions were 
used to assess the relationships between TyG and its obesity-related indices with HUA in children and adolescents. 
Receiver Operating Characteristic curves were constructed to compare the predictive power of these indicators. 
Furthermore, we conducted a stratified analysis based on sex and age. Restricted cubic spline curves were used 
to illustrate the dose–response relationship of TyG, TyG-BMI, TyG-WC, and TyG-WHtR with HUA in children and ado-
lescents. The sensitivity analysis included 1:1 propensity score matching with a caliper value of 0.02 and adjustments 
to the diagnostic criteria for HUA.

Results After adjusting for all covariables, multivariable logistic regression analysis indicated that the fourth quartiles 
of TyG (OR: 1.33, 95% CI: 1.14–1.54, P < 0.001), TyG-BMI (OR: 1.43, 95% CI: 1.14–1.79, P = 0.002), TyG-WC (OR: 1.76, 95% 
CI: 1.42–2.19, P < 0.001), and TyG-WHtR (OR: 1.92, 95% CI: 1.66–2.21, P < 0.001) were significantly associated with higher 
odds of HUA, compared to the lowest quartile. Stratified analyses identified a significant interaction between sex 
and TyG-BMI, TyG-WC, and TyG-WHtR. Compared to the first quartile, the highest quartile of TyG-BMI, TyG-WC and TyG-
WHtR among male participants exhibited a stronger association with HUA(Male: TyG-BMI: OR = 1.82, 95%CI: 1.28–2.59; 
TyG-WC: OR = 1.87, 95%CI: 1.31–2.67; TyG-WHtR: OR = 2.07, 95%CI: 1.68–2.54).
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Conclusions This study identified a significant association between TyG and related obesity indices with HUA in chil-
dren and adolescents in China. Furthermore, stronger associations of TyG-BMI, TyG-WC, and TyG-WHtR with HUA were 
observed, particularly in males.
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Introduction
Hyperuricemia (HUA) is a significant global public 
health concern, placing substantial economic burdens 
on patients and healthcare systems [1, 2]. HUA primarily 
arises from increased uric acid production and reduced 
renal excretion. Serum uric acid, a byproduct of purine 
metabolism, exhibits dual roles in human metabolism. 
Moderate serum uric acid levels can mitigate oxidative 
stress induced by free radicals and reactive oxygen spe-
cies, demonstrating strong antioxidant properties [3]. 
Conversely, elevated serum uric acid levels are strongly 
associated with higher odds of gout, chronic kidney dis-
ease, metabolic syndrome, cardiovascular events, and 
mortality [2, 4, 5]. Previous studies have demonstrated 
that HUA in children is associated with metabolic disor-
ders related to purines, genetic syndromes, and obesity 
[6–8]. Furthermore, a cohort study of US adolescents 
stratified participants by uric acid levels into quartiles 
and found a higher prevalence of metabolic syndrome 
in the top quartile [9]. Elevated childhood uric acid lev-
els are linked to impaired renal urate excretion in indi-
viduals with metabolic syndrome [6]. In recent years, the 
prevalence of HUA has increased substantially, particu-
larly among younger populations [10, 11]. HUA is fre-
quently asymptomatic in its early stages, contributing to 
underdiagnosis [12]. Therefore, early detection of HUA 
in children and adolescents and implementing effective 
preventive strategies are essential.

Previous studies have demonstrated a significant cor-
relation between insulin resistance (IR) and HUA [13, 
14]. Additionally, IR may impair renal uric acid excre-
tion in the proximal tubules, contributing to HUA [15, 
16]. The hyperinsulinemic-euglycemic clamp (HIEC) 
method is the gold standard for quantifying and assess-
ing IR [17]. It assesses insulin sensitivity by quantifying 
the glucose required to maintain euglycemia during con-
tinuous insulin infusion. However, it is technically com-
plex, time-intensive, costly, and requires frequent blood 
sampling, significantly limiting its feasibility in clini-
cal practice. The HOMA-IR index is regarded as a reli-
able marker for IR in adolescents and post-adolescents 
[18]. Simental-Mendia et al. reported that the TyG index 
demonstrated greater sensitivity than the HOMA-IR 
index in detecting IR in apparently healthy individuals 
[19]. The TyG index is calculated using the logarithm of 
the product of fasting triglycerides and glucose levels, 

which captures the combined effects of hypertriglyceri-
demia and hyperglycemia and is considered an essential 
predictor of IR in youth [20]. In states of IR, an increased 
level of hepatic gluconeogenesis causes increased hepatic 
glucose production, thereby raising blood glucose lev-
els [21]. Elevated TG levels have been shown to induce 
IR by increasing hepatic free fatty acid production and 
disrupting skeletal muscle glucose metabolism [22]. In 
addition to the TyG index, which demonstrates both 
high sensitivity and specificity in predicting IR [23, 24], 
the incorporation of anthropometric indicators such as 
body mass index (BMI) and waist circumference (WC) 
has been shown to enhance predictive accuracy in both 
teenagers and adults [25]. Rilna et al. observed a signifi-
cant association between high BMI and IR in pediatric 
populations [26]. Although BMI is a simple measure of 
weight relative to height and does not directly quantify 
body fat distribution, it still shows a significant positive 
correlation with visceral adipose tissue (VAT) content 
in children and adolescents (r = 0.72). Thus, BMI can 
serve as an indirect indicator of VAT [27]. Given that our 
study focused on children and adolescents, the waist-to-
height ratio (WHtR) may be a more precise measure of 
abdominal obesity than WC alone [28]. Existing research 
on the relationship between the TyG index and HUA has 
primarily focused on adult populations in the United 
States and China [29, 30]. However, it is significant to 
note that Chinese adolescents display unique metabolic 
characteristics throughout their development. Research 
on the association between TyG-related obesity indices 
and HUA in Chinese children and adolescents remains 
limited. Consequently, we utilized a large cross-sectional 
study that integrated TyG with BMI, WC, and WHtR to 
examine the relationship between TyG and its obesity-
related indicators with HUA in children and adolescents 
in China. In addition, it aims to provide an accessible and 
feasible tool for the early identification and prevention of 
HUA in Chinese children and adolescents.

Materials and methods
Study design and participants
This study utilized the data collected from the Chinese 
National Nutrition and Health Surveillance of Children 
and Lactating Mothers in 2017. Based on population 
distribution, a multi-stage stratified random sampling 
approach was employed to select 125 monitoring sites 
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across 31 provincial-level administrative regions in 
China, including provinces, autonomous regions, and 
municipalities under direct central government admin-
istration. Specifically, 5 monitoring sites were located in 
large cities, 57 in small and medium-sized cities, 50 in 
typical rural areas, and 13 in economically underdevel-
oped regions. At each monitoring site (city/district or 
county), two towns or streets were randomly selected as 
research locations, and two village or residential com-
mittees were further selected from each town or street 
as specific investigation units. Two hundred eighty chil-
dren and adolescents aged 6 to 17 were enrolled at each 
monitoring site. This surveillance included students from 
grades 1–6, 7–8, and 10–11, covering ten classes, with 28 
students selected for each class, ensuring a balanced sex 
distribution. Details of the study design are detailed in an 
earlier publication [31].

Since the participants in this study were children and 
adolescents aged 6–17 years, individuals younger than 
6 years or older than 17 years were excluded from the 
study. Furthermore, participants with missing physical 
measurements such as height, weight, WC, or biochemi-
cal data such as triglyceride (TG) and fasting blood glu-
cose (FBG) in the survey (n = 630) were excluded. Finally, 
participants with incomplete questionnaires (n = 4,784) 
were also excluded, resulting in a final study population 
of 10,167 participants (Fig. 1).

Ethical approval and consent to participate
Ethical approval for this study was granted by the Insti-
tute of Nutrition and Health Ethics Committee of 
the Chinese Center for Disease Control and Preven-
tion (CDC) (Ethics number: 201614). Additionally, 
all participating provinces, autonomous regions, and 

Fig. 1 The flow chart of participants in the study
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municipalities independently conducted ethical review 
procedures. In this surveillance, written informed con-
sent was obtained from the legal guardians of children 
aged 5–11, while for adolescents aged 12–17, consent 
was jointly provided by both the adolescents and their 
legal guardians. This process ensured compliance with 
ethical regulations.

Definitions and calculations of TyG‑related obesity indices
The TyG-related obesity indices comprises the TyG, TyG-
BMI, TyG-WC, and TyG-WHtR. These indices are cal-
culated by detecting FBG and TG and measuring height, 
weight, and WC. Six milliliters of venous blood samples 
were collected after an overnight fast to measure FBG, 
TG, and other routine biochemical indicators. The pro-
vincial CDC coordinated centralized testing following 
the Chinese CDC’s quality control and operational tech-
nical standards. Participants were instructed to remove 
their shoes, coats, and hats during the measurements. 
Height was measured using a standardized TZG height-
measuring device at each monitoring site, with a maxi-
mum measurable height of 2.0 m and a minimum scale 
of 0.1 cm, validated by the quality inspection department. 
Weight was measured using a calibrated electronic scale 
with a minimum scale of 0.1 kg and a maximum capacity 
of 150 kg, which was also inspected by the quality inspec-
tion department. WC was measured using a standardized 
tape of the same brand and model, with a length of 1.5 m 
and a minimum scale of 0.1 cm.

The TyG-related obesity indices were calculated as 
follows:

(1) TyG = LN(FBG(mg/dl) * TG(mg/dl)/2)
(2) BMI = Weight(kg)/(Height(m))2

TyG-BMI = TyG * BMI(kg/m2)

(3) TyG-WC = TyG * WC(cm)
(4) TyG-WHtR = TyG * WC(cm)/Height(cm)

Definition of HUA
According to the criteria described in the Dietary Guide-
lines for Patients with HUA and Gout (WS/T 560–2017), 
men and women with serum uric acid levels of ≥ 420 
μmol/L and ≥ 360 μmol/L, respectively, were classified as 
having HUA, while the remaining individuals were cat-
egorized into the non-HUA group.

Assessment of covariables
The following covariables were included in the study: sex, 
age, systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), total cholesterol (TC), creatinine (CREA), 

passive smoking, alcohol consumption, daily moderate-
to-vigorous physical activity (MVPA) time, family his-
tories of asthma, hypertension, and diabetes, as well as 
daily sugar-sweetened beverage (SSB) intake. Sex was 
categorized as either male or female. SBP and DBP were 
measured using an Omron HBP1300 electronic sphyg-
momanometer with a 0–300 mmHg measurement range 
and an accuracy of ± 1 mmHg. The arm cuff was wrapped 
around the upper arm, approximately 1–2 cm above the 
inside of the elbow joint. Measurements were taken three 
times, with a one-minute interval between each measure-
ment, and the average value of these three measurements 
was recorded. TC and CREA analyses were performed 
on fasting venous blood samples. Passive smoking, alco-
hol consumption, daily MVPA time, daily SSB intake, 
and family histories of asthma, hypertension, and dia-
betes were assessed using standardized questionnaires 
administered by the Chinese CDC project team. Passive 
smoking and alcohol consumption were assessed by ask-
ing participants about the number of days per week they 
were exposed to secondhand smoke and whether they 
had consumed alcohol in the past 30 days, respectively. 
These responses were subsequently categorized as “No” 
or “Yes”. MVPA time was defined as any daily activity 
causing temporary shortness of breath or noticeable per-
spiration, such as running, biking, swimming, playing, or 
performing household chores. Participants were asked 
to self-report their daily MVPA time. MVPA time was 
categorized into < 1 h, 1 to < 2 h, and ≥ 2 h. SSB intake 
were collected using the food frequency questionnaire 
method. Participants were asked to recall their consump-
tion of foods listed in the table over the past week and 
to estimate the daily frequency and average quantity 
consumed. SSBs included fruit and vegetable drinks, 
carbonated beverages, tea beverages, milk-based drinks, 
vegetable protein drinks, cereal drinks, energy drinks, 
coffee, and other sugar-sweetened beverages. Partici-
pants were asked whether any of the family members, 
including parents and grandparents, had asthma, hyper-
tension, or diabetes.

Statistical analyses
Continuous variables following a normal distribution are 
presented as mean ± standard deviation (x ± s), whereas 
non-normally distributed variables are reported as 
median (interquartile range, IQR). Categorical variables 
are expressed as percentages (n, %). The independent 
T-test and Pearson’s chi-squared test were used to com-
pare baseline characteristics of children and adolescents 
in the HUA and non-HUA groups. TyG, TyG-BMI, TyG-
WC, and TyG-WHtR were categorized into quartiles. 
Multivariable logistic regression models were utilized 
to evaluate the association between TyG-related obesity 
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indices and HUA in children and adolescents. Model 1 
was unadjusted; Model 2 adjusted for sex and age; Model 
3 was further adjusted for SBP, DBP, TC, CREA, passive 
smoking, alcohol consumption, daily MVPA time, fam-
ily histories of asthma, hypertension, and diabetes, as 
well as daily SSB intake, based on adjustments made in 
Model 2. Additionally, a stratified analysis was conducted 
according to sex and age. RCS curves were employed to 
investigate the dose–response relationships between 
TyG, TyG-BMI, TyG-WC, and TyG-WHtR with HUA 
in children and adolescents. In sensitivity analysis, a 1:1 
PSM was conducted using the nearest neighbor method 
with a caliper value of 0.02. Standardized Mean Differ-
ences (SMD) were employed to evaluate the balance of 
covariables before and after PSM. The diagnostic criteria 
for HUA were adjusted to 5.5 mg/dL, 6 mg/dL, and 7 mg/
dL [9].

All statistical analyses were performed using R software 
(version 4.3.2). A P-value of less than 0.05 was considered 
statistically significant.

Results
Baseline characteristics of the participants
A total of 10,167 participants were enrolled in this study, 
consisting of 5038 males (49.6%) and 5129 females 
(50.4%), with a mean age of 11.3 ± 3.2 years. The preva-
lence of HUA among participants was 22.8%. Participants 
in the HUA group demonstrated significantly higher 
TyG, TyG-BMI, TyG-WC, and TyG-WHtR values than 
those in the non-HUA group (P < 0.001). Compared to 
children and adolescents without HUA, those in the 
HUA group had significantly higher TG, FBG, age, WC, 
SBP, DBP, TC, and CREA levels. Furthermore, partici-
pants in the HUA group had significantly increased rates 
of passive smoking, alcohol consumption, and daily SSB 
intake exceeding 100 ml. There were no statistically sig-
nificant differences observed between the non-HUA and 
HUA groups in terms of sex, MVPA time, family history 
of asthma, and family history of hypertension. Detailed 
baseline characteristics of the participants are presented 
in Table 1.

Association between TyG‑related obesity indices and HUA
Multivariable logistic regression models were utilized 
to investigate the associations between TyG, TyG-BMI, 
TyG-WC, and TyG-WHtR with HUA in children and 
adolescents. After adjusting for all covariables, compared 
to the lowest quartile, the third and fourth quartiles of 
TyG were associated with HUA (OR(95%CI): 1.16 (1.00–
1.35), P = 0.045; OR(95%CI): 1.33 (1.14–1.54), P < 0.001). 
The highest quartile of TyG-BMI was significantly associ-
ated with HUA (OR(95%CI): 1.43 (1.14–1.79), P = 0.002). 
Furthermore, the third and fourth quartiles of TyG-WC 

and TyG-WHtR were also significantly associated with 
HUA (TyG-WC: OR(95%CI): 1.52 (1.26–1.83), P < 0.001; 
OR(95%CI): 1.76 (1.42–2.19), P < 0.001; TyG-WHtR: 
OR(95%CI): 1.20 (1.04–1.39), P = 0.015; OR(95%CI): 1.92 
(1.66–2.21), P < 0.001). (Table 2).

Figure  2 illustrates the predictive capabilities of TyG-
related obesity indices for HUA odds in children and ado-
lescents based on ROC curves. The area under the curve 
(AUC) values for TyG, TyG-BMI, TyG-WC, and TyG-
WHtR indicated strong predictive performance for HUA 
odds in children and adolescents (TyG: 0.747, 95%CI: 
0.735–0.758; TyG-BMI: 0.744, 95%CI: 0.733–0.756; 
TyG-WC: 0.746, 95%CI: 0.734–0.757; TyG-WHtR:0.737, 
95%CI: 0.726–0.748).

Stratified analysis
This study further analyzed the relationship between the 
TyG-related obesity indices and HUA in children and 
adolescents, stratified by sex and age. Figures 3, 4, 5, and 
6 depicts statistically significant interactions between 
sex and TyG-BMI, TyG-WC, and TyG-WHtR. Specifi-
cally, compared to the first quartile, the highest quar-
tile of TyG-BMI, TyG-WC and TyG-WHtR among male 
participants demonstrated a stronger association with 
HUA(Male: TyG-BMI: OR = 1.82, 95%CI: 1.28–2.59; 
TyG-WC: OR = 1.87, 95%CI: 1.31–2.67; TyG-WHtR: OR 
= 2.07, 95%CI: 1.68–2.54. Female: TyG-BMI: OR = 1.71, 
95%CI: 1.26–2.32; TyG-WC: OR = 1.84, 95%CI: 1.38–
2.45; TyG-WHtR: OR = 2.06, 95%CI: 1.68–2.53). The rela-
tionship between TyG and HUA was observed exclusively 
in the highest quartile of female participants(OR = 1.41, 
95%CI: 1.15–1.74). Furthermore, significant interactions 
between age and TyG-BMI were observed (6 ~ < 12: OR 
= 2.48, 95%CI: 1.73–3.56; 12 ~ 17: OR = 1.45, 95%CI: 
1.01–2.08).

The dose–response relationships between TyG‑related 
obesity indices and HUA based on RCS
RCS curves were used to examine the dose–response 
relationships between TyG, TyG-BMI, TyG-WC, TyG-
WHtR, and HUA in children and adolescents. Based on 
the fully adjusted model, positive linear relationships 
were observed between TyG, TyG-BMI, TyG-WC, and 
TyG-WHtR with HUA (P-nonlinear value > 0.05)(Fig-
ures 7, 8, 9, and 10).

Sensitive analysis
To assess the stability of our findings, Table 3 presents 
a comparative analysis before and after PSM, show-
ing that the standardized mean differences (SMD) of 
most covariables reduced to less than 0.1 after match-
ing. After PSM, compared with those in the lowest 
quartile, TyG (OR(95%CI): 1.32 (1.10–1.58), P = 0.003), 
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TyG-BMI (OR(95%CI): 1.50 (1.14–1.98), P = 0.004), 
TyG-WC (OR(95%CI): 1.60 (1.23–2.09), P < 0.001), 
TyG-WHtR (OR(95%CI): 2.03 (1.71–2.42), P < 0.001) 
continued to show significant associations with HUA 
among children and adolescents Table 4. The diagnos-
tic thresholds for HUA were lowered to 5.5 mg/dL, 6 
mg/dL, and 7 mg/dL, respectively, and the associations 
remained consistent. (Tables S1-S3). 

Discussion
This study utilized data from the 2017 Chinese National 
Nutrition and Health Surveillance of Children and Lac-
tating Mothers to examine the association between 
TyG-related obesity indices and HUA in children and 
adolescents. Elevating TyG, TyG-BMI, TyG-WC, and 
TyG-WHtR were associated with higher odds of HUA. 

Table 1 Baseline characteristics of participants

* P < 0.05; **P < 0.01; ***P < 0.001

Variables Total participants(n = 
10,167)

non‑HUA(n = 7845) HUA(n = 2322) P value

Male, n(%) 5038 (49.6) 3924 (50.0) 1114 (48.0) 0.084

Age, Mean ± SD 11.3 ± 3.2 10.9 ± 3.1 12.8 ± 2.8  < 0.001***

TG, Mean ± SD 0.9 ± 0.6 0.9 ± 0.7 1.0 ± 0.5  < 0.001***

FBG, Mean ± SD 5.2 ± 0.6 5.1 ± 0.5 5.3 ± 0.6  < 0.001***

TyG, Mean ± SD 8.1 ± 0.4 8.1 ± 0.4 8.2 ± 0.4  < 0.001***

TyG‑BMI, Mean ± SD 151.1 ± 38.1 146.1 ± 35.7 167.9 ± 41.1  < 0.001***

TyG‑WC, Mean ± SD 517.6 ± 101.1 502.4 ± 90.5 569.2 ± 116.8  < 0.001***

TyG‑WHtR, Mean ± SD 3.5 ± 0.5 3.5 ± 0.5 3.6 ± 0.6  < 0.001***

WC, Mean ± SD 63.2 ± 11.1 61.8 ± 10.1 69.0 ± 12.4  < 0.001***

SBP, Mean ± SD 111.9 ± 11.7 111.1 ± 11.3 115.1 ± 12.6  < 0.001***

DBP, Mean ± SD 66.1 ± 8.7 65.8 ± 8.7 66.6 ± 8.5  < 0.001***

TC, Mean ± SD 4.0 ± 0.8 4.0 ± 0.8 4.1 ± 0.8  < 0.001***

CREA, Mean ± SD 53.9 ± 14.3 52.1 ± 12.3 62.4 ± 17.0  < 0.001***

Passive smoking, n(%)  < 0.001***

 No 5702 (56.1) 4475 (57.0) 1227 (52.8)

 Yes 4465 (43.9) 3370 (43.0) 1095 (47.2)

Alcohol consumption, n(%)  < 0.001***

 No 8903 (87.6) 7066 (90.1) 1837 (79.1)

 Yes 1264 (12.4) 779 (9.9) 485 (20.9)

Daily MVPA, n(%) 0.976

 < 1 h 5204 (51.2) 4018 (51.2) 1186 (51.1)

 1 ~ < 2 h 3531 (34.7) 2725 (34.7) 806 (34.7)

 >  = 2 h 1432 (14.1) 1102 (14.0) 330 (14.2)

Family history of asthma, n (%) 0.417

 No 9684 (95.3) 7465(95.2) 2219(95.6)

 Yes 483 (4.7) 380(4.8) 103(4.4)

Family history of hypertension, n (%) 0.165

 No 6477 (63.7) 5026(64.1) 1451(62.5)

 Yes 3690 (36.3) 2819(35.9) 871(37.5)

Family history of diabetes, n (%) 0.023*

 No 8779 (86.3) 6807(86.8) 1972(84.9)

 Yes 1388 (13.7) 1038(13.2) 350(15.1)

Daily SSB intake, n (%)  < 0.001***

 < 100 ml/d 6500 (63.9) 5196 (66.2) 1304 (56.2)

 ≥ 100 ml/d 3667 (36.1) 2649 (33.8) 1018 (43.8)
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Table 2 Associations between TyG-related obesity indices and HUA

Model 1 unadjusted;

Model 2 adjusted for sex and age;

Model 3 adjusted for sex, age, SBP, DBP, TC, CREA, passive smoking, alcohol consumption, daily MVPA, family history of asthma, family history of hypertension, family 
history of diabetes, and daily SSB intake
* P < 0.05; **P < 0.01; ***P < 0.001

Variables Model 1 Model 2 Model 3

OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value

TyG
 Quartile 1 ref.

 Quartile 2 1.19 (1.04–1.37) 0.013* 1.10 (0.95–1.27) 0.205 1.04 (0.90–1.21) 0.575

 Quartile 3 1.47 (1.29–1.69)  < 0.001*** 1.31 (1.14–1.51)  < 0.001*** 1.16 (1.00–1.35) 0.045*

 Quartile 4 1.96 (1.71–2.23)  < 0.001*** 1.77 (1.54–2.03)  < 0.001*** 1.33 (1.14–1.54)  < 0.001***

TyG‑BMI
 Quartile 1 ref.

 Quartile 2 1.75 (1.48–2.06)  < 0.001*** 1.29 (1.09–1.53) 0.003** 1.15 (0.96–1.37) 0.126

 Quartile 3 2.85 (2.44–3.34)  < 0.001*** 1.58 (1.33–1.89)  < 0.001*** 1.16 (0.96–1.40) 0.131

 Quartile 4 5.24 (4.50–6.10)  < 0.001*** 2.81 (2.37–3.33)  < 0.001*** 1.43 (1.14–1.79) 0.002**

TyG‑WC
 Quartile 1 ref.

 Quartile 2 1.62 (1.37–1.92)  < 0.001*** 1.14 (0.96–1.36) 0.135 1.16 (0.97–1.39) 0.110

 Quartile 3 3.10 (2.65–3.62)  < 0.001*** 1.68 (1.41–2.01)  < 0.001*** 1.52 (1.26–1.83)  < 0.001***

 Quartile 4 5.38 (4.62–6.26)  < 0.001*** 2.81 (2.36–3.35)  < 0.001*** 1.76 (1.42–2.19)  < 0.001***

TyG‑WHtR
 Quartile 1 ref.

 Quartile 2 1.02 (0.89–1.17) 0.744 1.06 (0.92–1.23) 0.392 1.04 (0.89–1.20) 0.638

 Quartile 3 1.16 (1.01–1.33) 0.038* 1.24 (1.08–1.43) 0.003** 1.20 (1.04–1.39) 0.015*

 Quartile 4 1.97 (1.73–2.24)  < 0.001*** 2.10 (1.84–2.41)  < 0.001*** 1.92 (1.66–2.21)  < 0.001***

Fig. 2 The receiver-operating characteristic curve of TyG-related obesity indices for predicting HUA
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Stratified analysis further revealed that males exhibited 
higher odds of HUA.

The prevalence of HUA among children and ado-
lescents varied geographically, with reported rates of 
30.2% in the United States [8] and 9.4% in South Korea 
[32]. This study determined that the prevalence of HUA 
among children and adolescents was 22.8%, closely 

aligning with findings from prior Chinese studies [33, 
34]. A recent study reported an overall prevalence of 
HUA of 55.12% (8766/15,739) among children and ado-
lescents receiving hospital treatment. High prevalence of 
HUA may be attributed to the adoption of lower diagnos-
tic thresholds used for HUA [35]. However, most stud-
ies used varying diagnostic thresholds for HUA across 

Fig. 3 OR forest map of HUA in children and adolescents in stratified analysis (TyG group)

Fig. 4 OR forest map of HUA in children and adolescents in stratified analysis (TyG-BMI group)
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diverse populations, and no universally accepted diag-
nostic criteria for HUA in children have been established. 
Accordingly, the sensitivity analysis adjusted the diag-
nostic thresholds to 5.5 mg/dL, 6 mg/dL, and 7 mg/dL, 
respectively, with consistent results.

Numerous studies have examined the association 
between TyG and HUA across various populations. Pre-
vious research has reported a significant positive cor-
relation between TyG levels and HUA in hypertensive 
adults, with the OR of HUA increasing by 104% for each 

Fig. 5 OR forest map of HUA in children and adolescents in stratified analysis (TyG-WC group)

Fig. 6 OR forest map of HUA in children and adolescents in stratified analysis (TyG-WHtR group)
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unit increase in the TyG index [36]. A cross-sectional and 
longitudinal study conducted in Tianjin, China, dem-
onstrated that elevated TyG levels were associated with 
higher odds of HUA in patients with diabetic nephropa-
thy [37]. Similarly, other studies have investigated the dis-
tribution patterns of TyG and its correlation with HUA 
in pediatric populations. The TyG index distribution 

in children and adolescents demonstrated a consistent 
linear trend, aligning with findings from existing study 
[38]. A study on short-stature children and adolescents 
aged 3–18 reported a significant positive correlation 
between the TyG index and HUA level [39]. Moreover, 
HUA exhibited a positive association with the TyG index 
when serum uric acid levels exceeded 6.55 mg/dL. Our 

Fig. 7 RCS linear regression analysis of TyG and HUA (The blue shaded sections represent 95% confidence intervals; the dashed line represents 
that OR is 1)

Fig. 8 RCS linear regression analysis of TyG-BMI and HUA (The blue shaded sections represent 95% confidence intervals; the dashed line represents 
that OR is 1)
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study suggests that TyG, TyG-BMI, TyG-WC, and TyG-
WHtR are reliable predictors of HUA. This conclusion is 
supported by high AUC values, which align with findings 
from a study conducted on Korean children and adoles-
cents [40]. As Mazidi et al. demonstrated, the association 
between TyG and serum uric acid is partially mediated by 
BMI and WC [41]. Hao et al. reported that the TyG-WC 

index is a superior indicator of centripetal obesity and IR 
compared to other indicators. Intermediate TyG-WC lev-
els may indicate a balanced state of energy metabolism, 
whereas elevated TyG-WC levels may impair insulin sen-
sitivity, leading to HUA by increasing uric acid levels [42]. 
One study demonstrated a strong association between 
uric acid levels and abdominal obesity [43]. Akiko et al. 

Fig. 9 RCS linear regression analysis of TyG-WC and HUA (The blue shaded sections represent 95% confidence intervals; the dashed line represents 
that OR is 1)

Fig. 10 RCS linear regression analysis of TyG-WHtR and HUA (The blue shaded sections represent 95% confidence intervals; the dashed line 
represents that OR is 1)
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utilized computed tomography and observed that adi-
pose tissue distribution in various anatomical regions 
significantly influences uric acid metabolism. Greater 
visceral and hepatic fat content is linked to increased 
HUA risk. Consequently, TyG-WC and TyG-WHtR are 
strongly associated with both IR and HUA. The potential 
underlying mechanism may involve visceral obesity and 
hyperinsulinemia caused by fatty liver, which hinders uric 
acid excretion and promotes its systemic accumulation 
[44].

Stratified analysis demonstrates a significant interac-
tion between sex and TyG-BMI, TyG-WC, and TyG-
WHtR, revealing that elevated TyG-BMI, TyG-WC, and 

TyG-WHtR levels are linked to higher odds of HUA in 
male children and adolescents. However, high TyG levels 
in female children and adolescents were similarly asso-
ciated with increased odds of HUA, which is consistent 
with previous research findings [45]. Pre-adolescent girls 
have lower waist fat percentages but higher peripheral fat 
percentages compared to males. The sex differences in fat 
distribution during adolescence are pronounced, becom-
ing more evident during late adolescence [46]. In males, 
WC and WHtR serve as more effective indicators of VAT 
accumulation. Males are more likely to accumulate meta-
bolically active VAT, which is characterized by a height-
ened inflammatory response and closely associated with 

Table 3 Baseline characteristics of HUA and Non-HUA groups before and after matching  (N1 = 10,165,  N2 = 4420) 

* P < 0.05; **P < 0.01; ***P < 0.001

Variables Unmatched population Matched population

Non‑HUA(n = 7845) HUA(n = 2322) SMD P value Non‑HUA(n = 2210) HUA(n = 2210) SMD P value

Sex, n(%) 0.041 0.084 0.229 0.037

 Male 3924 (50.0) 1114 (48.0) 1073 (48.6) 1114 (50.4)

 Female 3921(50,0) 1208(52.0) 1137 (51.4) 1096 (49.6)

Age, Mean ± SD 10.9 ± 3.1 12.8 ± 2.8 0.646  < 0.001*** 12.8 ± 3.1 12.7 ± 2.8 0.044 0.140

SBP, Mean ± SD 111.1 ± 11.3 115.1 ± 12.6 0.338  < 0.001*** 114.6 ± 11.2 114.5 ± 12.3 0.010 0.747

DBP, Mean ± SD 65.8 ± 8.7 66.6 ± 8.5 0.089  < 0.001*** 66.5 ± 8.3 66.4 ± 8.5 0.004 0.895

TC, Mean ± SD 4.0 ± 0.8 4.1 ± 0.8 0.091  < 0.001*** 4.1 ± 0.8 4.1 ± 0.8 0.030 0.324

CREA, Mean ± SD 52.1 ± 12.3 62.4 ± 17.0 0.693  < 0.001*** 60.8 ± 13.7 60.9 ± 13.6 0.012 0.692

Passive smoking, n(%) 0.084  < 0.001*** 0.031 0.319

 No 4475 (57.0) 1227 (52.8) 1219 (55.2) 1185 (53.6)

 Yes 3370 (43.0) 1095 (47.2) 991 (44.8) 1025 (46.4)

Alcohol consumption, n(%) 0.307  < 0.001*** 0.015 0.646

 No 7066 (90.1) 1837 (79.1) 1796 (81.3) 1783 (80.7)

 Yes 779 (9.9) 485 (20.9) 414 (18.7) 427 (19.3)

Daily MVPA, n(%) 0.005 0.976 0.027 0.676

 < 1 h 4018 (51.2) 1186 (51.1) 1154 (52.2) 1140 (51.6)

 1 ~ < 2 h 2725 (34.7) 806 (34.7) 770 (34.8) 764 (34.6)

 >  = 2 h 1102 (14.0) 330 (14.2) 286 (12.9) 306 (13.8)

Family history of asthma, 
n (%)

0.019 0.417 0.018 0.607

 No 7465 (95.2) 2219 (95.6) 2117 (95.8) 2109 (95.4)

 Yes 380 (4.8) 103 (4.4) 93 (4.2) 101 (4.6)

Family history of hyperten‑
sion, n (%)

0.033 0.165 0.007 0.827

 No 5026 (64.1) 1451 (62.5) 1387 (62.8) 1395 (63.1)

 Yes 2819 (35.9) 871 (37.5) 823 (37.2) 815 (36.9)

Family history of diabetes, 
n (%)

0.053 0,023* 0.010 0.765

 No 6807 (86.8) 1972 (84.9) 1892 (85.6) 1884 (85.2)

 Yes 1038 (13.2) 350 (15.1) 318 (14.4) 326 (14.8)

Daily SSB intake, n (%) 0.208  < 0.001*** 0.003 0.952

 < 100 ml/d 5196 (66.2) 1304 (56.2) 1259 (57.0) 1262 (57.1)

 ≥ 100 ml/d 2649 (33.8) 1018 (43.8) 951 (43.0) 948 (42.9)
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metabolic dysfunction [47]. An elevated TyG-WC index 
in men was associated with higher odds of HUA, possibly 
due to men’s greater visceral and hepatic adipose tissue 
accumulation. Central obesity, characterized by increased 
VAT accumulation, is strongly associated with increased 
metabolic risk and all-cause mortality [48]. Scholars have 
reported that the TyG index is more predictive of T2DM 
risk in females, possibly due to sex-specific differences 
in glucose metabolism and IR [49]. However, elevated 
TyG index in women has also been linked to increased 
odds of HUA. In women, adipose tissue tends to be pre-
dominantly stored in peripheral or subcutaneous tis-
sue. In contrast, the TyG index is derived exclusively 
from the FBG and TG levels,  and does not  account for 
fat distribution. Salisbury et  al. attributed the observed 
sex-based differences in hepatic metabolism to variations 
in RNA modification. The modification of hepatic lipid 
metabolism was regulated by  m6A, resulting in consist-
ently higher fasting TG levels in female mice than their 
male counterparts under various dietary conditions [50]. 
Although these findings are derived from animal studies, 
they may provide insights into the association between 
the TyG index and HUA in women in our study.

A review has highlighted age- and sex-specific differ-
ences in the dynamic changes of uric acid levels in chil-
dren and adolescents. Blood uric acid levels gradually 

rise in children and adolescents, starting from birth 
and continuing through the completion of elemen-
tary school. In males, blood uric acid levels rise rap-
idly, whereas in females, they continue to increase at a 
slower rate [8]. This difference is likely attributable to 
the relatively higher muscle mass observed in males. 
Muscle mass is a well-established primary source of 
purines in the body, and skeletal muscle mass strongly 
correlates with HUA risk in obese youth [51]. Further-
more, pre-adolescent girls exhibit significantly higher 
estrogen levels than boys of the same age. In adolescent 
females, estrogen levels significantly enhance uric acid 
excretion [52, 53]. Blood uric acid levels progressively 
rise from infancy through adolescence. However, in 
males, testosterone drives a more pronounced rise in 
uric acid levels during adolescence [54]. Furthermore, 
our study identifies a significant interaction between 
age and TyG-BMI. Childhood obesity is strongly associ-
ated with VAT accumulation, which is more susceptible 
to glucose and lipid metabolism disruptions, contribut-
ing to IR [55]. The effects of obesity on IR may be par-
tially alleviated during adolescence due to increased 
growth hormone secretion, which stimulates lipolysis 
and muscle mass growth [56]. Therefore, the diagnos-
tic criteria for HUA should account for age- and sex-
specific differences.

Table 4 Associations between TyG-related obesity indices and HUA after PSM

Variables Model 1 Model 2 Model 3

OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value

TyG
 Quartile 1 ref.

 Quartile 2 1.07 (0.90–1.28) 0.442 1.09 (0.91–1.29) 0.205 1.06 (0.89–1.27) 0.510

 Quartile 3 1.20 (1.01–1.43) 0.036* 1.22 (1.03–1.45) 0.022* 1.16 (0.97–1.38) 0.108

 Quartile 4 1.54 (1.30–1.82)  < 0.001*** 1.57 (1.33–1.87)  < 0.001*** 1.32 (1.10–1.58) 0.003**

TyG‑BMI
 Quartile 1 ref.

 Quartile 2 1.10 (0.90–1.35) 0.361 1.25 (1.01–1.55) 0.043** 1.18 (0.95–1.48) 0.137

 Quartile 3 1.18 (0.97–1.43) 0.097 1.48 (1.19–1.84)  < 0.001*** 1.26 (1.00–1.60) 0.053

 Quartile 4 1.76 (1.45–2.13)  < 0.001*** 2.21 (1.78–2.74)  < 0.001*** 1.50 (1.14–1.98) 0.004**

TyG‑WC
 Quartile 1 ref.

 Quartile 2 0.92 (0.75–1.14) 0.457 1.10 (0.88–1.38) 0.400 1.08 (0.86–1.35) 0.524

 Quartile 3 1.17 (0.96–1.42) 0.121 1.52 (1.21–1.90)  < 0.001*** 1.45 (1.15–1.83) 0.002**

 Quartile 4 1.63 (1.34–1.98)  < 0.001*** 2.14 (1.71–2.68)  < 0.001*** 1.60 (1.23–2.09)  < 0.001***

TyG‑WHtR
 Quartile 1 ref.

 Quartile 2 1.06 (0.90–1.26) 0. 479 1.07 (0.90–1.26) 0.392 1.07 (0.91–1.27) 0.413

 Quartile 3 1.17 (0.98–1.38) 0.078 1.17 (0.99–1.39) 0.071 1.20 (1.01–1.43) 0.037*

 Quartile 4 1.92 (1.62–2.27)  < 0.001*** 1.92 (1.62–2.26)  < 0.001*** 2.03 (1.71–2.42)  < 0.001***
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The sequence of causal relationships between IR and 
HUA remains controversial. A study utilizing a cross-
hysteresis pathway analysis approach suggested that ele-
vated uric acid levels may precede the onset of IR [57]. 
Another study indicated that uric acid may contribute to 
IR by activating the NLRP3 inflammasome [58]. IR has 
been shown to induce HUA, as elevated insulin levels 
impair insulin sensitivity by altering receptor function 
and enhancing lipid synthesis. Consequently, this exac-
erbates IR,  which, in turn, leads to increased uric acid 
levels, thus creating a vicious cycle within the body [59]. 
However, another Mendelian randomization study indi-
cated a bidirectional causal link between hyperinsuline-
mia and HUA. Conversely, HUA was not found to induce 
hyperinsulinemia [60]. The underlying mechanisms link-
ing TyG and HUA remain incompletely understood. TyG 
index has been identified as a reliable indicator of IR and 
pancreatic beta-cell dysfunction in children and adoles-
cents [23, 61]. IR is typically characterized by impaired 
insulin signaling and receptor dysfunction. In response to 
the effects of IR, beta-cells increase insulin secretion to 
maintain euglycemia, resulting in compensatory hyper-
insulinemia. Hyperinsulinemia-induced renal vasodi-
lation increases the glomerular filtration rate, which is 
associated with reduced endothelial nitric oxide produc-
tion and increased oxidative stress. Moreover, glomeru-
lar pressure overload can induce structural changes and 
increase uric acid excretion, contributing to HUA [62]. IR 
has been shown to also upregulate the expression of urate 
transporter 1 (URAT1) and downregulate ATP-bind-
ing cassette subfamily G member 2 (ABCG2) through 
enhanced sodium reabsorption in the proximal renal 
tubules, consequently reducing sodium and urate excre-
tion, thereby elevating uric acid levels [16, 63].

One notable strength of this study is that we used the 
data from 2017 Chinese National Nutrition and Health 
Surveillance of Children and Lactating Mothers, which 
is nationally representative. Considering the growth, 
developmental characteristics, and lifestyle behaviors 
of children and adolescents, adjustments were made for 
variables such as passive smoking, alcohol consump-
tion, daily MVPA time, and daily SSB intake. Sensitivity 
analysis included performing 1:1 PSM and modifying the 
HUA diagnostic threshold, both of which yielded consist-
ent results. However, this study has several limitations. 
Firstly, excluding ninth- and twelfth-grade students in 
this study may limit its ability to accurately represent the 
characteristics of children and adolescents. The pressures 
of transitioning to a new academic stage may lead these 
students to deviate from their usual dietary intake, body 
measurements, lifestyle habits, and other health indica-
tors. Secondly, the high heritability of HUA is well-docu-
mented, with specific genes identified that may influence 

its prevalence [64]. However, due to limitations, neither 
family history of HUA nor genetic factors were included 
as covariables. Finally, as a cross-sectional study, this 
research cannot establish causal relationships between 
TyG-related obesity indices and HUA. Longitudinal 
follow-up studies are recommended to investigate the 
effects of dynamic changes in TyG indices on uric acid 
levels.

Conclusion
Our study revealed that TyG, TyG-BMI, TyG-WC, and 
TyG-WHtR exhibited a linear and positive correla-
tion with HUA in children and adolescents. Monitor-
ing TyG obesity-related indices could serve as practical 
biomarkers for identifying HUA in children and adoles-
cents. Moreover, males exhibited stronger associations 
among TyG-BMI, TyG-WC, and TyG-WHtR with HUA. 
Incorporating these readily available indices into rou-
tine metabolic assessments could facilitate the develop-
ment of sex-specific prevention protocols in HUA.
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