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Abstract 

Aim This study aimed to examine the relationships between remnant cholesterol (RC) and the risk of aortic aneurysm 
and dissection (AAD).

Methods This prospective cohort study included 368,139 European adults from the UK Biobank. Additionally, 
the causal relationship between RC and AAD was investigated using Mendelian randomization (MR) analyses.

Results During a median follow-up of 13.65 years, 1,634 cases of abdominal aortic aneurysm (AAA), 698 cases of tho-
racic aortic aneurysm (TAA), and 184 cases of aortic dissection (AD) were identified. Elevated RC levels were associated 
with an increased risk of AAA compared to the reference group ([highest vs. lowest RC levels]: adjusted hazard ratio 
(HR) = 1.65, 95% CI: 1.36–1.99). However, no significant association was observed between high RC levels and the risk 
of either TAA or AD. Two-sample MR analyses supported a significant causal effect of RC on AAA risk (odds ratio 
(OR) = 2.08, 95% CI: 1.70–2.56). The association between RC and AAA persisted after adjusting for the effects of RC-
associated genetic variants on low-density lipoprotein cholesterol (LDL-C). In contrast, MR analyses did not indicate 
any causal associations between RC and TAA or AD.

Conclusions Elevated RC was linked to a greater risk of developing AAA, with MR analyses confirming a causal rela-
tionship. These findings suggest that RC may function as a new biomarker for AAA and could be integral to strategies 
aimed at preventing AAA.
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Introduction
Aortic aneurysm and dissection (AAD) affect 1.3–8% of 
individuals and are associated with high mortality rates 
due to acute aortic syndromes [1, 2]. AAD includes tho-
racic aortic aneurysm (TAA), abdominal aortic aneurysm 
(AAA), and aortic dissection (AD), is commonly associ-
ated with smoking, hypertension and dyslipidemia [3]. 
Prior to rupture, AAD is often asymptomatic, making 
timely diagnosis and treatment challenging. However, 
once rupture occurs, mortality rates soar to 80% [4]. Con-
sequently, early prediction of AAD is critical for improv-
ing survival outcomes and enhancing patient prognosis.

Research has indicated that the etiology of AAA and 
atherosclerotic cardiovascular disease (ASCVD) is 
heavily influenced by conventional lipid profiles, com-
prising low-density lipoprotein cholesterol (LDL-C), 
high-density lipoprotein cholesterol (HDL-C), and total 
cholesterol (TC) [5]. Remnant cholesterol (RC) is the 
cholesterol content of chylomicrons, chylomicron rem-
nants, intermediate-density lipoprotein (IDL), and very 
low-density lipoprotein (VLDL) [6]. In contrast to tradi-
tional lipid parameters, RC has been increasingly asso-
ciated with ASCVD in recent studies, demonstrating its 
superior predictive capability in evaluating both the risk 
of development and the prognosis of ASCVD [7–9]. Pre-
liminary evidence suggests that RC is deposited in arte-
rial walls and accumulate in the intima and media, which 
promotes foam cell formation and the progression of 
atherosclerosis [10]. Studies have shown a connection 
between elevated levels of RC and increased risks of myo-
cardial infarction, heart failure, ASCVD, and even mor-
tality [9, 11–14]. Atherosclerosis has been shown to be 
strongly associated with the occurrence and progression 
of AAD, particularly aortic aneurysms, as both condi-
tions share overlapping risk factors [2, 3, 15]. Mechanis-
tically, RC may play a role in influencing the occurrence 
of AAD; however, current evidence remains inadequate 
to definitively establish a clear link between RC and AAD 
risk. Further exploration of the specific relationship 
between RC and AAD could yield valuable insights into 
risk assessment and management, ultimately enhancing 
the efficacy of AAD prevention strategies.

To explore the relationship between RC and incident 
AAD risk, a prospective cohort study was conducted 
using data from the UK Biobank, encompassing a large 
European adult population. Additionally, causal relation-
ships between RC and AAD were validated through MR 
analysis.

Methods
UK Biobank cohort data
In the UK Biobank cohort, 502,389 individuals aged 
40–69  years were registered between April 2006 and 

December 2010, a prospective population-based study 
[16]. The participants submitted comprehensive health 
data via touch-screen questionnaires and direct anthro-
pometric assessments. Blood samples were obtained for 
genotyping and biomarker analysis. The research proto-
col and related data access information can be accessed 
online (http:// www. ukbio bank. ac. uk/).

Participants in this research who had a baseline diag-
nosis of AAA, TAA, or AD (n = 332) or who did not have 
information on their lipid profiles (TC, triglyceride (TG), 
LDL-C, and HDL-C; n = 70,699) were not included in the 
analysis. Additionally, data on lost visits (n = 994) and 
other covariate-related data (n = 62,225) were excluded. 
Finally, our research comprised 368,139 individuals in 
total (Supplementary file 1, Figure S1).

LDL-C was determined using the Friede-
wald equation when TG levels were ≤ 4  mmol/L: 
LDL-C = TC − HDL-C − (TG/2.2). For TG lev-
els > 4  mmol/L, LDL-C was directly measured [12, 17, 
18]. RC was computed using the extensively used and 
verified techniques of earlier research, which were TC 
minus LDL-C minus HDL-C [8, 9]. To determine the 
effects of illnesses, the International Classification of ill-
nesses Coding System (ICD-10) was used. The ICD-10 
codes for AAA, TAA, and AD were taken from medical 
records [19, 20]. The codes and descriptions of the covar-
iates were provided in Supplementary File 1, Table  S1, 
and the Details of Covariates.

Genome‑wide association study (GWAS) data
Data sources for exposures and outcomes
The MRC Integrative Epidemiology Unit (IEU) Open 
GWAS database provides GWAS summary statistics 
for RC, which include information from 115,082 people 
of European ancestry [21]. Simultaneously, how genetic 
instruments affect exposure to LDL-C was determined. 
LDL-C proxies were obtained from the Global Lipids 
Genetics Consortium (GLGC), which includes a sam-
ple of 173,082 people (http:// lipid genet ics. org/) [22]. 
The GWAS data related to TAA, AAA, and AD patients 
were retrieved from the FinnGen consortium R12 release 
data (AAA, 4439 cases and 463,106 controls; TAA, 5108 
cases and 463,106 controls; AD, 1150 cases and 463,106 
controls).

Statistical analysis
Retrospective analysis and sensitivity analysis
Kurtosis and skewness measures were used in addition 
to normal probability plots to evaluate the normality of 
continuous data. Data that were nonnormally distributed 
and categorical are described as medians.

The follow-up duration, used as the time scale in the 
Cox proportional hazards model, was defined as the 

http://www.ukbiobank.ac.uk/
http://lipidgenetics.org/)
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interval between the enrollment date at the assess-
ment center and the occurrence of the outcome event or 
death. The lowest quintile served as the reference group 
for the prospective analysis, which evaluated correla-
tions between the RC quintiles, other variables, and the 
incidence of AAD using the Cox proportional hazards 
model. The unadjusted Cox regression was represented 
as a univariate analysis in Model 1. Model 2 was adjusted 
for sex, age, and ethnicity. In addition, Model 3 was fur-
ther adjusted for common confounders associated with 
cardiovascular diseases, such as smoking status, drinking 
status, body mass index (BMI), education, activity, LDL-
C, diabetes, hypertension, stroke, healthy diet, coronary 
atherosclerosis (CAD), coronary heart disease (CHD) 
and peripheral vascular disease (PVD). These covariates 
were identified on the basis of their relevance to the out-
comes of interest or their potential to influence the effect 
estimate by more than 10%. Hazard ratios (HRs) and the 
associated 95% confidence intervals (CIs) were presented 
as outcomes. Prior to constructing the model, the covari-
ance between RC and the covariates was evaluated via 
linear regression equations, and the variance inflation 
factors (VIFs) pertaining to RC and each covariate were 
determined.

Subgroup analyses were performed, and interaction 
variables were included in the adjusted model to explore 
any changes in the relationship between AAA risk and 
RC quintiles. Age (≥ 65 or < 65  years), sex (male or 
female), BMI (≥ 25 or < 25 kg/m2), smoking status (yes or 
no), diabetes status (yes or no), hypertension status (yes 
or no), CHD status (yes or no), and LDL-C level (≥ 2.6 
or < 2.6 mmol/L) were among these categories.

Owing to the strong collinearity among antihyperten-
sive medications, antidiabetic drugs, and cholesterol-
lowering agents, this study only considers including 
antihypertensive medications in the multivariable adjust-
ment model for sensitivity analysis. Additionally, a 
regression analysis was performed with RC as a continu-
ous variable against AAD.

Mendelian randomization and sensitivity analysis
Genetic instrument selection
For the construction of genetic instrument variables 
(IVs), genetic proxies were delineated as single-nucleo-
tide polymorphisms (SNPs) correlated with RC exposure 
and individual lipoproteins characterized by the high-
est RC content, including medium- and large-density 
lipoproteins (M-VLDLs), small-density lipoproteins 
(S-VLDLs), medium-density lipoproteins (L-VLDLs), and 
intermediate-density lipoproteins (IDLs). Genetic instru-
ments for RC traits were constructed from GWASs using 
variants in linkage equilibrium. Using the 1000 Genomes 
reference panel, the genetic variants were consolidated 

using a linkage disequilibrium threshold  (r2 < 0.001, dis-
tance = 10 mb). A genome-wide criterion of P < 5E-08 was 
established for the selection of genetic variants strongly 
associated with the exposures. Additionally, the efficacy 
of the instrument was determined by the F statistic, and 
weak instruments with F statistics < 10 were removed. 
This study utilized publicly accessible GWAS data, all 
originating from original studies that had obtained 
approval from the respective ethical review committees.

Two‑sample MR analysis
For all the statistical studies, the R packages "Two Sample 
MR" and "Mendelian Randomization" were used. Inverse-
variance weighting (IVW), MR‒Egger, the weighted 
median (WM), weighted mode and simple mode were 
used to address the possible influence of pleiotropy 
bias to determine whether there is a causal relationship 
between the genetic predisposition to exposure and the 
result. Because of its effectiveness and dependence on 
relevant IVs, the IVW approach was chosen for the main 
MR study [23]. The Cochrane’s Q test was used to assess 
any possible heterogeneity [24]. If significant heterogene-
ity (P < 0.05) was observed, a random-effects IVW model 
was applied [25]. To determine the horizontal pleiotropy 
of the genetic variations, the MR‒Egger intercept was 
used (P < 0.05 was regarded as evidence of horizontal 
pleiotropy). Furthermore, the impact of IVs identified 
through MR-PRESSO tests was examined in an addi-
tional distortion analysis. Any outliers with a P < 0.05 in 
this analysis were excluded, and the causal estimates were 
re-evaluated [26]. To ascertain whether particular vari-
ations were responsible for the findings, leave-one-out 
analysis was also carried out [27].

To enhance the robustness of the association between 
RC and AAA, additional sensitivity analyses were per-
formed. Using the FUMAGWAS database, all RC-related 
SNPs were examined for their biological functions and 
nearby genes, and SNPs associated with confounding 
factors such as age, sex, education, smoking, alcohol 
consumption, BMI, cardiovascular disease, and diabetes 
were excluded. To avoid horizontal pleiotropy of RC-
related genetic instruments and ensure that SNPs influ-
ence AAA solely through RC, this study selected SNPs 
from genes directly involved in RC metabolism or lipid 
pathways (PSK9, APOB, APOE, LDLR, HMGCR ) for fur-
ther analysis [28, 29]. Furthermore, given that variants in 
the fatty acid desaturase (FADS) gene cluster are major 
determinants of multiple metabolic traits, including lipid 
fractions, FADS variants were excluded from enhancing 
robustness by mitigating the risk of pleiotropy through 
alternative metabolic pathways. And SNPs with the larg-
est effect sizes on RC were removed to assess whether 
these variants disproportionately influenced the observed 
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associations. Finally, Steiger filtering method was used to 
detect reverse causation.

Mediation Analysis
A mediation analysis was performed using multivariable 
MR (MVMR) to estimate the direct effect of RC on the 
outcome [30], after accounting for the mediating effect 
of LDL-C. The total effect was directly obtained from 
the univariable MR analyses, and the indirect effect was 
calculated as the total effect minus the direct effect. IVs 
were filtered using the criteria of P < 1E-05 and link-
age disequilibrium (LD)  r2 < 0.001 within 10 mb. Vari-
ants substantially linked with the outcomes were then 
eliminated. No sensitivity analyses were conducted for 
the MVMR model, as it was not the primary estimation 
of interest, and pleiotropy-robust sensitivity models for 
MVMR are not yet well established.

R version 4.3.0 (R Foundation for Statistical Comput-
ing) was used for all the statistical analyses. The results 
were deemed statistically significant if the P value with 
two tails was less than 0.05.

Results
Baseline characteristics of the participants
This research included 368,139 individuals in total. There 
were 1634 incident AAA cases, 698 incident TAA cases, 
and 184 incident AD cases, with a median follow-up of 
13.65  years. Among the participants, 53% were female, 
and the median age was 58  years. Table  1 displays the 
participants’ initial characteristics for each of the RC 
quintiles. Participants in higher RC quintiles were more 
likely to be male, had higher mean BMI, and were more 
likely to smoke, engage in unhealthy activity, follow an 
unhealthy diet, and have lower educational attainment 
compared to those in lower RC quintiles. They were 
also more prone to comorbidities. Supplementary file 
1, Table S2 displays the quintile distributions of RC lev-
els among the participants, and Supplementary file 1, 
Table  S3 presents the differences in baseline character-
istics between individuals who developed AAD during 
follow-up and those who did not.

RC and AAD in the UK Biobank
Figure  1 displays the results of the multivariate Cox 
regression analysis with respect to RC and AAD. A posi-
tive does-gradient association between RC and AAA 
was identified, with the degree of correlation remain-
ing stable. There was no covariance detected among the 
independent variables (Supplementary file 1, Table  S4). 
Upon controlling for prevalent risk variables in Model 3, 
it was discovered that individuals in the following quin-
tiles—the second (HR = 1.30, 95% CI 1.07–1.60), third 
(HR = 1.31, 95% CI 1.08–1.59), fourth (HR = 1.39, 95% CI 

1.15–1.69), and fifth (HR = 1.65, 95% CI 1.36–1.99) quin-
tiles—had a notably higher risk of AAA (P value < 0.01). 
There were modest associations between RC and TAA 
and AD in Model 1. After adjusting for covariates, there 
was no association between RC quintiles and the risk 
of AAA or AD. Additionally, when RC was treated as a 
continuous variable, each 1 mmol/L increase in RC was 
significantly associated with a 39% higher risk of inci-
dent AAA in Model 3 (HR = 1.39, 95% CI 1.22–1.58; 
P value < 0.01). And RC was not connected with TAA 
risk (Supplementary file 1, Figure S2). However, each 
1  mmol/L increase in RC was associated with a 38% 
lower risk of incident AD. To further investigate the rela-
tionship between RC and AAA, the results showed the 
cumulative incidence of AAA events across RC quintile 
groups, with higher RC quintiles associated with a higher 
incidence of AAA (Fig. 2).

Subgroup analyses considering sex, age, BMI, LDL-C, 
hypertension, diabetes, CHD, and smoking revealed sig-
nificant interactions between RC and age, smoking, LDL-
C, and hypertension (Fig.  3). The results showed that, 
regardless of whether individuals were above or below 
65  years of age, higher RC levels were associated with 
an increased risk of AAA. Furthermore, both smokers 
and individuals with hypertension presented a stronger 
association between elevated RC levels and a higher risk 
of AAA. Additionally, compared with individuals with 
LDL-C levels below 2.6 mmol/L, those with LDL-C levels 
above 2.6 mmol/L had an even greater risk of AAA.

The sensitivity analyses produced results consistent 
with the primary outcomes for both the adjusted models 
for medications (Supplementary file 1, Figure S3-S4) and 
continuous RC levels (Supplementary file 1, Figure S2).

Effect of genetic instruments, SNPs, on RC levels
A total of 50 independent SNPs correlated with RC were 
designated as IVs to evaluate the impact of RC on AAA, 
AD and TAA. All the SNPs were strongly associated with 
RC (P < 5E-08). Supplementary file 1, Table S5 provides a 
complete list of the SNPs used in the genetic instruments. 
F statistics of RC (Supplementary file 1, Table S6), which 
ranged from 29.79–2778.31, were all over 10, indicating 
a low chance of mild instrument bias. Supplementary file 
1, Table S7 provides an overview of the research cohorts.

According to Table  2, the genetic score revealed a 
statistically significant association (OR = 2.08, 95% 
CI, 1.70–2.56; P = 2.28E-12) between total RC and 
an elevated risk of AAA, as determined by the IVW 
method. Additionally, a robust causal relationship 
between LDL-C and AAA was observed (OR = 1.95, 
95% CI, 1.59–2.37; P = 5.57E-11) (Fig. 4). However, five 
MR methodologies failed to demonstrate a significant 
association between genetic susceptibility to RC and 
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Table 1 Description of baseline characteristics for the overall participants and for the groups by RC quintiles

RC quintiles P

Characteristics Total participants 
(n = 368,139)

Quintile 1 
(n = 73,753)

Quintile 2 
(n = 73,613)

Quintile 3 
(n = 73,568)

Quintile 4 
(n = 73,600)

Quintile 5 
(n = 73,605)

Sex (%)  < 0.001

 Female 195,782 (53.18) 49,555 (67.19) 44,581 (60.56) 39,874 (54.20) 34,545 (46.94) 27,227 (36.99)

 Male 172,357 (46.82) 24,198 (32.81) 29,032 (39.44) 33,694 (45.80) 39,055 (53.06) 46,378 (63.01)

 Age (median 
[IQR])

58.000 [50.000, 
63.000]

54.000 [47.000, 
61.000]

58.000 [50.000, 
63.000]

59.000 [51.000, 
64.000]

59.000 [52.000, 
64.000]

58.000 [51.000, 
63.000]

 < 0.001

Ethnic (%)  < 0.001

 Others 17,952 (4.88) 4860 (6.59) 3674 (4.99) 3222 (4.38) 3106 (4.22) 3090 (4.20)

 White 350,187 (95.12) 68,893 (93.41) 69,939 (95.01) 70,346 (95.62) 70,494 (95.78) 70,515 (95.80)

Smoking (%)  < 0.001

 No 200,359 (54.42) 44,349 (60.13) 42,074 (57.16) 40,324 (54.81) 37,895 (51.49) 35,717 (48.53)

 Yes 167,780 (45.58) 29,404 (39.87) 31,539 (42.84) 33,244 (45.19) 35,705 (48.51) 37,888 (51.47)

Drinking (%)  < 0.001

 No 181,136 (49.20) 32,988 (44.73) 35,268 (47.91) 36,806 (50.03) 37,798 (51.36) 38,276 (52.00)

 Yes 187,003 (50.80) 40,765 (55.27) 38,345 (52.09) 36,762 (49.97) 35,802 (48.64) 35,329 (48.00)

Body mass index 
(%):

 < 0.001

 < 18.50 1875 (0.51) 1020 (1.38) 468 (0.64) 225 (0.31) 112 (0.15) 50 (0.07)

 18.50–24.99 120,507 (32.73) 40,768 (55.28) 30,344 (41.22) 22,790 (30.98) 16,139 (21.93) 10,466 (14.22)

 25.00–29.99 157,478 (42.78) 24,634 (33.40) 30,283 (41.14) 33,161 (45.08) 34,353 (46.68) 35,047 (47.61)

 > = 30.00 88,279 (23.98) 7331 (9.94) 12,518 (17.01) 17,392 (23.64) 22,996 (31.24) 28,042 (38.10)

Lipid parameters, median [IQR], 
mmol/L

 < 0.001

 LDL-C 3.451 [2.811, 4.109] 3.189 [2.665, 
3.757]

3.455 [2.856, 
4.060]

3.546 [2.897, 
4.193]

3.564 [2.872, 
4.254]

3.555 [2.822, 
4.267]

 TC 5.652 [4.908, 6.422] 5.254 [4.621, 
5.936]

5.535 [4.845, 
6.242]

5.676 [4.943, 
6.399]

5.790 [5.025, 
6.569]

6.085 [5.279, 
6.894]

 TG 1.480 [1.043, 2.143] 0.790 [0.680, 
0.880]

1.124 [1.044, 
1.206]

1.480 [1.382, 
1.584]

1.969 [1.823, 
2.140]

2.944 [2.578, 
3.559]

 HDL-C 1.401 [1.173, 1.677] 1.671 [1.426, 
1.954]

1.531 [1.305, 
1.790]

1.411 [1.207, 
1.652]

1.298 [1.116, 
1.511]

1.167 [1.012, 
1.352]

 RC 0.672 [0.474, 0.967] 0.359 [0.309, 
0.400]

0.511 [0.475, 
0.548]

0.672 [0.628, 
0.720]

0.892 [0.828, 
0.967]

1.297 [1.161, 
1.496]

Education (%)  < 0.001

 Low 58,386 (15.86) 8326 (11.29) 10,777 (14.64) 12,321 (16.75) 13,261 (18.02) 13,701 (18.61)

 Medium 186,508 (50.66) 36,079 (48.92) 37,063 (50.35) 37,292 (50.69) 37,691 (51.21) 38,383 (52.15)

 High 123,245 (33.48) 29,348 (39.79) 25,773 (35.01) 23,955 (32.56) 22,648 (30.77) 21,521 (29.24)

Activity (%)  < 0.001

 Healthy activity 255,045 (69.28) 53,730 (72.85) 52,289 (71.03) 51,090 (69.45) 49,591 (67.38) 48,345 (65.68)

 Unhealthy 
activity

113,094 (30.72) 20,023 (27.15) 21,324 (28.97) 22,478 (30.55) 24,009 (32.62) 25,260 (34.32)

Diet (%)  < 0.001

 Healthy diet 57,387 (15.59) 13,349 (18.10) 12,421 (16.87) 11,507 (15.64) 10,768 (14.63) 9342 (12.69)

 Unhealthy diet 310,752 (84.41) 60,404 (81.90) 61,192 (83.13) 62,061 (84.36) 62,832 (85.37) 64,263 (87.31)

Peripheral vascular disease (%) 0.031

 No 366,935 (99.67) 73,526 (99.69) 73,387 (99.69) 73,352 (99.71) 73,326 (99.63) 73,344 (99.65)

 Yes 1204 (0.33) 227 (0.31) 226 (0.31) 216 (0.29) 274 (0.37) 261 (0.35)

Coronary heart disease (%)

 No 353,612 (96.05) 71,652 (97.15) 70,983 (96.43) 70,583 (95.94) 70,205 (95.39) 70,189 (95.36)  < 0.001

 Yes 14,526 (3.95) 2101 (2.85) 2630 (3.57) 2985 (4.06) 3394 (4.61) 3416 (4.64)

Coronary atherosclerosis (%)  < 0.001
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the likelihood of developing AD or TAA. MR analysis 
was further conducted to explore the causal associa-
tions between different RC components and AAA. The 
results showed that higher AAA risk was associated 
with L–VLDL–C (OR = 1.77, 95% CI, 1.40–2.24), M–
VLDL-C (OR = 2.21, 95% CI, 1.80–2.72), and S–VLDL-
C (OR = 2.00, 95% CI, 1.62–2.47).

Potential outliers among the IVs were identified. 
Following the exclusion of all outliers detected by the 
MR-PRESSO test (Supplementary file 1, Table  S8), 
no significant directional pleiotropy was observed 
(Table  2). Notable heterogeneity was detected in 
the MR analysis, prompting the use of a multiplica-
tive random effects model. Supplementary file 1, 

Table 1 (continued)

RC quintiles P

Characteristics Total participants 
(n = 368,139)

Quintile 1 
(n = 73,753)

Quintile 2 
(n = 73,613)

Quintile 3 
(n = 73,568)

Quintile 4 
(n = 73,600)

Quintile 5 
(n = 73,605)

 No 367,759 (99.90) 73,701 (99.93) 73,548 (99.91) 73,508 (99.92) 73,491 (99.85) 73,511 (99.87)

 Yes 380 (0.10) 52 (0.07) 65 (0.09) 60 (0.08) 109 (0.15) 94 (0.13)

Stroke (%) 0.035

 No 366,271 (99.49) 73,386 (99.50) 73,286 (99.56) 73,198 (99.50) 73,198 (99.45) 73,203 (99.45)

 Yes 1868 (0.51) 367 (0.50) 327 (0.44) 370 (0.50) 402 (0.55) 402 (0.55)

Diabetes (%)  < 0.001

 No 360,508 (97.93) 72,687 (98.55) 72,486 (98.47) 72,139 (98.06) 71,715 (97.44) 71,481 (97.11)

 Yes 7630 (2.07) 1066 (1.45) 1127 (1.53) 1429 (1.94) 1884 (2.56) 2124 (2.89)

Hypertension (%)  < 0.001

 No 162,789 (44.22) 43,675 (59.22) 36,151 (49.11) 31,452 (42.75) 27,315 (37.11) 24,196 (32.87)

 Yes 205,350 (55.78) 30,078 (40.78) 37,462 (50.89) 42,116 (57.25) 46,285 (62.89) 49,409 (67.13)

Medication intake, 
n (%)

 < 0.001

 Antidiabetic drugs

  No 246,160 (99.30) 54,754 (98.98) 51,329 (99.42) 48,632 (99.38) 45,912 (99.41) 45,533 (99.37)

  Yes 1731 (0.70) 566 (1.02) 300 (0.58) 302 (0.62) 273 (0.59) 290 (0.63)

 Antihypertensive drugs

  No 246,160 (75.59) 54,754 (84.18) 51,329 (79.01) 48,632 (74.73) 45,912 (70.52) 45,533 (69.57)

  Yes 79,481 (24.41) 10,290 (15.82) 13,639 (20.99) 16,444 (25.27) 19,194 (29.48) 19,914 (30.43)

 Cholesterol-lowering drugs

  No 246,160 (79.16) 54,754 (86.38) 51,329 (82.24) 48,632 (78.68) 45,912 (74.61) 45,533 (73.68)

  Yes 64,788 (20.84) 8636 (13.62) 11,086 (17.76) 13,178 (21.32) 15,621 (25.39) 16,267 (26.32)

Fig. 1 Associations between remnant cholesterol (RC) quintiles (Qs) and the risk of aortic aneurysm and dissection (AAD). Model 1 was a univariate 
Cox regression model for RC and AAD. Model 2 was adjusted for age, sex, ethnicity and BMI. Model 3 was adjusted for age, sex, ethnicity, BMI, 
smoking status, drinking, education, activity, LDL-C, diabetes, hypertension, stroke, healthy diet, CAD, CHD and PVD. AAA, abdominal aortic 
aneurysm; TAA, thoracic aortic aneurysm; AD, aortic dissection; CAD, coronary atherosclerosis; CHD, coronary heart disease; PVD, peripheral vascular 
disease; HR, hazard ratio. II, RC quintile 2; III, RC quintile 3; IV, RC quintile 4; V, RC quintile 5
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Figures  S5–S8 illustrate the practical importance of 
each IV for RC using leave-one-out techniques, fun-
nel plots, scatter diagrams and forest plots. Supple-
mentary file 2, Tables S9-S11 showed the RC-related 
IndSigSNPs, along with the traits and nearest genes 
associated with each SNP. Supplementary File 2, Tables 
S12-S18, presented additional SNPs included in the 
sensitivity analysis and the corresponding two-sample 
MR results. The results indicated that after removing 
confounding-related SNPs, FADS-related SNPs, and 
the largest effect on RC, the association between RC 
and AAA remained consistent with the main findings 
of this study, with no evidence of horizontal pleiotropy 
or reverse causality.

Mediation analysis
Mediation analysis showed that the total effect was 
almost entirely driven by the direct effect of RC 
(Beta: 0.61; 95% CI, 0.33–0.88). Part of the effect of 
RC on AAA was mediated by the mediator LDL-C 
(Beta = 0.13; 95%CI, −0.22–0.47). (Supplementary file 
1, Figure S9).

Discussion
This prospective cohort study and MR analysis revealed 
that RC was positively correlated with an elevated risk of 
AAA, but showed no significant correlation with the risk 
of TAA or AD. In the UK Biobank, participants in the 
higher quintile of RC demonstrated an increased risk of 
AAA incidence compared with those in the lower quin-
tile. After adjusting for various covariates, RC was still 
independently related to the probability of AAA. Fur-
thermore, two-sample MR analysis and mediation analy-
sis further confirmed that the causal association between 
RC and AAA remains independent of LDL-C.

According to recent guidelines, dyslipidemia is intri-
cately linked to both the occurrence and advancement of 
cardiovascular diseases [3]. A growing body of research 
has investigated the relationship between plasma lipids 
and AAA risk. One observational study found that LDL-
C, TC, TG, and HDL-C were independently associated 
with an increased risk of AAA [31]. Similarly, a meta-
analysis established a causal connection between conven-
tional lipid parameters and AAA risk [5]. Domenico et al. 
reported that an intensified LDL-C lowering program 
could reduce the incidence of major vascular events and 

Fig. 2 The cumulative incidence of abdominal aortic aneurysm among remnant cholesterol quintile (Q) groups. AAA, abdominal aortic aneurysm
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Fig. 3 Subgroup analysis results for the associations between remnant cholesterol (RC) quintiles (Qs) and the risk of AAA. BMI indicates, body 
mass index; LDL‐C, low‐density lipoprotein cholesterol; CAD, coronary atherosclerosis; HR, hazard ratio; Age, years; BMI, kg/m.3; LDL-C, mmol/L; 
and HR = log (exp(estimate)). II, RC quintile 2; III, RC quintile 3; IV, RC quintile 4; V, RC quintile 5
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peripheral vascular events in individuals with asympto-
matic AAA [32]. Although dyslipidemia is found in AD 
patients and is correlated with increased mortality [33, 
34], an MR study illustrated that genetically influenced 
serum lipid levels did not contribute to the risk of AD 
[35]. Furthermore, Allara et  al. reported no significant 
associations between LDL-C, HDL-C, or TG levels and 
TAA risk [36].

RC represents the cholesterol found in TG-rich lipo-
proteins and serves as a precursor to the formation of 
atherogenic small dense LDL-C, which is known for 
its potent atherogenic effects [37, 38]. As a novel lipid 
marker, RC has shown a stronger association with car-
diovascular disease compared to conventional lipid 
parameters [8, 9, 39]. In addition, multiple MR studies 
have established a genetically driven causal relationship 
between RC and atherosclerotic cardiovascular condi-
tions [7, 40]. Collectively, these findings suggest that RC 
may function as an independent predictor of AAD. How-
ever, the number of studies addressing the connection 
between RC and AAD remains minimal. This research 
used a large-scale prospective cohort and MR analysis 
to examine the connection between RC and AAD for the 
first time. The results demonstrated a robust causal asso-
ciation between RC and AAA, supporting the notion that 
RC may serve as a novel predictor for AAA.

LDL-C, a well-established lipid marker, has long been 
recognized as a significant risk factor for cardiovascular 
diseases. Nevertheless, recent studies have indicated that 

residual cardiovascular risk persists even after LDL-C 
reduction treatments [41–43], with RC playing a key role 
in this risk [9]. To investigate whether RC could inde-
pendently predict the occurrence of AAA, multivariable 
Cox regression analysis and mediation analysis were per-
formed as part of this study. Both approaches revealed 
that RC was independently associated with an increased 
risk of AAA, indicating that RC can predict AAA devel-
opment regardless of LDL-C level.

Although the exact mechanism underlying the strong 
correlation between RC and AAA remains unclear, it 
may involve inflammation and atherosclerosis. RC par-
ticles are capable of traversing arterial walls and being 
absorbed by smooth muscle cells and macrophages. Since 
human cells can typically breakdown TGs but not cho-
lesterol, the accumulation of RC in the arterial wall may 
contribute to atherosclerosis, similar to LDL-C [44]. 
Despite carrying approximately 40 times more choles-
terol than LDL-C particles, RC particles exhibit compa-
rable atherogenic potential [45]. Thus, unsurprisingly, 
RC content has been linked to cardiovascular diseases in 
both observational and genetic studies [44, 46, 47]. Addi-
tionally, prior research has highlighted shared pathogenic 
mechanisms between atherosclerosis and AAA, with ath-
erosclerosis being a well-established risk factor for AAA 
[3, 48]. This study provides new evidence for the causal 
relationship between RC and AAA susceptibility. In gen-
eral, RC was strongly correlated with atherosclerosis risk, 
laying a theoretical foundation for its potential role in 

Table 2 Mendelian randomization results of the effect of RC on the risk of AAD, along with tests for heterogeneity and horizontal 
pleiotropy

AAA abdominal aortic aneurysm, TAA  thoracic aortic aneurysm, AD aortic dissection, OR odds ratio, Ple pleiotropy, Het heterogeneity

Outcome MR method No. of SNP OR OR (95% CI) P for
association

P for MR‑ 
Egger
intercept

P for 
heterogeneity
test

AAA IVW 50 2.08 2.08(1.70–2.56) 2.28E-12 0.65  < 0.01

MR Egger 1.97 1.97(1.42–2.73 1.87E-04

Weighted mode 1.77 1.77(1.40–2.24) 1.64E-05

Weighted median 1.81 1.81(1.43–2.28) 5.71E-07

Simple mode 2.24 2.24(1.22–4.10) 1.00E-02

TAA IVW 50 1.08 1.08(0.94–1.23) 2.80E-01 0.96 0.01

MR Egger 1.08 1.08(0.88–1.33) 4.80E-01

Weighted mode 1.25 1.25(1.05–1.49) 2.00E-02

Weighted median 1.28 1.28(1.08–1.52) 0.40E-02

Simple mode 1.07 1.07(0.76–1.51) 6.90E-01

AD IVW 50 1.24 1.24(0.99–1.56) 6.00E-02 0.75 0.42

MR Egger 1.19 1.19(0.83–1.70) 3.60E-01

Weighted mode 1.52 1.52(1.04–2.23) 4.00E-02

Weighted median 1.51 1.51(1.05–2.16) 3.00E-02

Simple mode 1.24 1.24(0.57–2.70) 5.90E-01
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AAA progression. Furthermore, recent studies indicate 
that heightened RC levels may exacerbate inflammatory 
processes in arterial tissues [49, 50], with chronic inflam-
mation being a key factor in the pathogenesis of AAA 
[51]. Therefore, RC may facilitate the development of 
AAA.

This study found no significant correlation between RC 
levels and TAA or AD from either an epidemiological or 
genetic perspective. Although RC shows a statistically 

significant negative correlation with AD when treated as 
a continuous variable, this association disappears after 
stratifying by RC quintiles. This could be due to the rel-
atively small number of AD cases, which may result in 
lower statistical power. Studies have shown that the most 
common risk factor for AAA is atherosclerosis, whereas 
the most common risk factors for TAA were connective 
tissue diseases and bicuspid aortic valves [52]. While 
TAA and AAA share several pathogenic similarities, 

Fig. 4 Mendelian randomization results of the effects of remnant cholesterol (RC) and its most represented subfractions, as well as low-density 
lipoprotein cholesterol (LDL-C), on the risk of abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA), and aortic dissection (AD). 
VLDL, very low-density lipoprotein; IDL-C, intermediate-density lipoprotein cholesterol; L-VLDL-C, large VLDL cholesterol; M-VLDL-C, medium 
VLDL cholesterol; S-VLDL-C, small VLDL cholesterol; Tot RC, total remnant cholesterol; and. AAA, abdominal aortic aneurysm; TAA, thoracic aortic 
aneurysm; AD, aortic dissection; OR, odds ratio
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along with these notable distinctions, there are additional 
variations in predisposing gene mechanisms of inher-
itance and population prevalence. Thoracic aortic dis-
ease is caused by single-gene mutations, whereas AAA 
typically does not demonstrate this genetic pattern [53]. 
Pathogenic genes that lead to a high risk of thoracic aortic 
disease are identified in the genetic risk of TAA. Impor-
tantly, these genes generally do not increase the risk of 
AAA. This might explain the differing results between 
the TAA and AAA patients in this study. Although 
observational studies revealed a correlation between in-
hospital mortality in AD patients and dyslipidemia [33, 
34], an MR investigation showed that blood lipid levels 
inherited genetically did not influence the probability of 
AD development [35]. The findings of the MR analysis 
and the prospective cohort research in this investigation 
indicated that there did not seem to be a significant cor-
relation between the prevalence of AD and RC.

Given the limited reporting on RC and AAD, further 
clinical trials and basic research are soon needed to inves-
tigate their relationships and underlying mechanisms.

Strengths and limitations
This research has numerous advantages. This study uti-
lized a large cohort with an extended follow-up period 
and applied MR analysis to establish the genetic asso-
ciation between RC and AAA, effectively addressing the 
limitations of observational studies in accounting for 
confounding factors and reverse causation. Moreover, for 
the first time, this study thoroughly explored the relation-
ship between RC and AAD risk, offering robust epidemi-
ological evidence to predict the influence of RC on AAA 
development, with MR analysis providing further valida-
tion at the genetic level. Finally, various sensitivity analy-
sis methods were employed in the MR study, including 
heterogeneity tests, pleiotropy tests, MR-PRESSO, and 
the removal of confounding SNPs using FUMAGWAS, 
among other approaches, ensuring the stability and reli-
ability of the findings.

However, this work is not without its limitations. In 
the UK Biobank data, the definition of AAD relies solely 
on ICD-10 diagnostic codes, leading to a limited num-
ber of cases, and future studies should consider broader 
definitions of outcomes, such as including patients 
undergoing endovascular aneurysm repair procedures, 
to increase case numbers and improve the reliability 
of research findings. The definition of medication use 
among participants is also restricted to only two spe-
cific codes, which likely underestimates baseline medi-
cation use rates; while adjustment for antihypertensive 
drug use did not alter the conclusions, the potential 
roles of lipid-lowering and antidiabetic drugs remain 
unaddressed, necessitating further investigations into 

the effects of these three common drug classes on RC-
induced AAA. Additionally, the populations included 
in both the UK Biobank clinical data and MR summary 
data are predominantly of European ancestry, which 
may limit the generalizability of the findings to other 
populations. Moreover, due to the potential genetic 
correlations between exposures, it is difficult to identify 
SNPs that are independently associated with RC and 
not confounded by other lipid markers. Although this 
study used summary-level data, future research could 
utilize individual-level data to reconstruct genetic risk 
scores for specific SNPs, potentially providing more 
comprehensive insights. Considering the strong corre-
lations between RC and lipid markers such as LDL-C, 
HDL-C, TC, and TG, along with the potential multicol-
linearity among the components of the lipid profile, this 
study did not include additional lipid parameters in the 
MVMR analysis. Although only LDL-C was included as 
a mediator, the statistical power of the analysis may still 
be limited.

Conclusions
Prospective cohort research and MR analysis revealed 
an independent causal relationship between RC levels 
and the risk of AAA, whereas there was no associa-
tion between RC levels and TAA or AD. These findings, 
along with additional evidence in the field, suggest that 
RC should be viewed as an independent marker of AAA 
risk and that early detection of RC may prevent the 
development of AAA.
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