
Dakal et al. Lipids in Health and Disease           (2025) 24:61  
https://doi.org/10.1186/s12944-024-02425-1

REVIEW Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Lipids in Health and Disease

Lipids dysregulation in diseases: core 
concepts, targets and treatment strategies
Tikam Chand Dakal1†, Feng Xiao2†, Chandra Kanta Bhusal3,4, Poorna Chandrika Sabapathy3, Rakesh Segal3,4, 
Juan Chen2* and Xiaodong Bai5* 

Abstract 

Lipid metabolism is a well-regulated process essential for maintaining cellular functions and energy homeostasis. 
Dysregulation of lipid metabolism is associated with various conditions, including cardiovascular diseases, neurode-
generative disorders, and metabolic syndromes. This review explores the mechanisms underlying lipid metabolism, 
emphasizing the roles of key lipid species such as triglycerides, phospholipids, sphingolipids, and sterols in cel-
lular physiology and pathophysiology. It also examines the genetic and environmental factors contributing to lipid 
dysregulation and the challenges of diagnosing and managing lipid-related disorders. Recent advancements 
in lipid-lowering therapies, including PCSK9 inhibitors, ezetimibe, bempedoic acid, and olpasiran, provide promis-
ing treatment options. However, these advancements are accompanied by challenges related to cost, accessibility, 
and patient adherence. The review highlights the need for personalized medicine approaches to address the interplay 
between genetics and environmental factors in lipid metabolism. As lipidomics and advanced diagnostic tools con-
tinue to progress, a deeper understanding of lipid-related disorders could pave the way for more effective therapeutic 
strategies.

Keywords Lipid metabolism, Dyslipidemia, Cardiovascular disease (CVD), Lipidomics, Triglycerides, Phospholipids, 
Cholesterol

Introduction
 Lipids are organic molecules characterized by their 
hydrophobic nature, exhibiting poor solubility in water 
but excellent solubility in organic solvents. In the animal 
kingdom, lipids play critical roles in energy storage, ther-
mal insulation, cellular membrane formation, and acting 
as chemical messengers. However, elevated lipid levels 
in the blood can lead to fat deposition in arterial walls, a 
condition associated with vascular complications such as 
atherosclerosis, stroke, and heart disease [1–3].

Disruptions in lipid metabolism, often stemming from 
enzymatic dysfunction or insufficient enzyme produc-
tion, can result in excessive lipid accumulation. This 
retention leads to persistent cellular and tissue damage, 
particularly affecting the central and peripheral nervous 
systems. Such damage is implicated in metabolic disor-
ders, including Gaucher’s disease, Tay-Sachs disease, and 
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Niemann-Pick disease (NPD) [4]. Obesity, characterized 
by abnormal fat accumulation, significantly increases 
the risk of heart disease, diabetes, and hypertension [5]. 
Additionally, alterations in the composition of the intes-
tinal microbiome have been linked to accelerated liver 
fat buildup, contributing to obesity and metabolic dis-
eases [6]. Notably, approximately 50% of deaths related 
to cardiovascular diseases can be attributed to metabolic 
imbalances, with obesity, hyperglycemia, atherogenic 
dyslipidemia, and hypertension being key risk factors [7].

Metabolic dysfunction often arises from pathophysio-
logical interactions that lead to abnormal and detrimental 
metabolic activity. Obesity-related metabolic disorders, 
identifiable in early childhood, manifest through various 
conditions, including infertility, hypothyroidism, nonal-
coholic steatohepatitis, hormone imbalances, and diabe-
tes [8, 9]. Insulin resistance, a growing concern associated 
with lipid metabolism dysfunction, necessitates advance-
ments in pharmaceutical research and diagnostic tools 
[10]. Excessive consumption of saturated fats and defi-
ciencies in essential lipids, such as polyunsaturated fats 
and phospholipids, contribute to inflammation and glu-
cose-insulin imbalance. Furthermore, specific lipid medi-
ators, such as lipoxin A4, have been identified in chronic 
diseases, including periodontal conditions [11]. The 
National Institute of Neurological Disorders and Stroke 
highlights that the excessive accumulation of fat signifi-
cantly contributes to health complications, including tis-
sue damage and diseases affecting the liver, brain, bone 
marrow, peripheral nervous system, and spleen.

Lipid dysregulation refers to disturbances in lipid 
metabolism caused by genetic factors, dietary habits, life-
style, and underlying diseases. Conditions such as dys-
lipidemia, characterized by elevated cholesterol levels, 
significantly increase the risk of cardiovascular disease 
[12, 13]. This review highlights the need for a multifac-
eted approach to treatment, combining pharmacological 
interventions, lifestyle modifications, and personalized 
medicine. Such a holistic perspective aims to improve 
patient outcomes and advance the field of lipid metabo-
lism and its associated health conditions.

This review aims to provide a comprehensive over-
view of lipid dysregulation, its role in various diseases, 
and the potential for targeted therapeutic strategies. It 
explores core concepts and clinical relevance, emphasiz-
ing the mechanisms underlying lipid-related disorders. 
Understanding the molecular and physiological basis 
of lipid dysregulation could pave the way for innovative 
pharmacological interventions and lifestyle modifications 
to effectively address these disorders. Furthermore, this 
review highlights the need for a multifaceted approach 
to treatment, combining pharmacological interventions, 
lifestyle modifications, and personalized medicine. Such 

a holistic perspective aims to improve patient outcomes 
and advance the field of lipid metabolism and its associ-
ated health conditions.

Causes and consequences of lipid dysregulation
The reduction in elevated LDL cholesterol levels rarely 
exceeds 10%, regardless of the treatment methods 
employed. The most significant improvement is achieved 
by reducing the intake of saturated fatty acids, particu-
larly those derived from animal fats [14]. Due to the 
minimal effect of dietary cholesterol, current U.S. guide-
lines do not recommend restricting cholesterol intake 
[15]. Lifestyle modifications, either alone or in com-
bination with lipid-lowering strategies, have a greater 
impact on elevated triglyceride levels. For instance, lim-
iting alcohol consumption and reducing the intake of 
fast-absorbing carbohydrates can lead to a reduction in 
triglyceride levels by over 50%. Regular physical activity 
further enhances lipid profiles. While the direct impact 
on fat proportions may be moderate in some cases, these 
adjustments positively influence the overall risk profile 
[16].

For individuals at high cardiovascular risk, adherence 
to a Mediterranean diet rich in olive oil and almonds has 
been shown to lower the relative risk by 30%. Addition-
ally, nut consumption has demonstrated LDL cholesterol 
reduction and an overall improvement in lipid profiles, 
contributing to decreased cardiovascular risk [17].

Imbalances in the secondary metabolism of lipids are 
associated with several diseases. The most common clini-
cal conditions include diabetes mellitus, hypothyroid-
ism (characterized by elevated LDL cholesterol), renal 
diseases (manifesting as hypertriglyceridemia or mixed 
hyperlipoproteinemia; see Table 1), and cholestatic liver 
disorders [18, 19]. Furthermore, lipid metabolism abnor-
malities have been linked to other medical conditions 
such as lymphoma, Cushing syndrome, and porphyria 
[20].

When lipid metabolism dysfunction results from an 
underlying condition, the primary treatment approach 
should focus on managing the root cause. However, 
individuals with chronic diseases like diabetes or renal 
dysfunction often face challenges in addressing the 
underlying condition effectively. As a result, they fre-
quently experience symptoms stemming from both pri-
mary and secondary lipid metabolism abnormalities [25].

Hypertriglyceridemia
Triglyceride levels are often significantly elevated in 
isolated hypertriglyceridemia, while LDL cholesterol 
levels show only moderate increases. Total choles-
terol levels may also be elevated in some cases. Isolated 
hypertriglyceridemia generally responds well to lifestyle 
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modifications, similar to mixed hyperlipoproteinemia 
[26]. However, predicting whether a patient will respond 
positively or negatively remains challenging due to insuf-
ficient conclusive studies. The detection threshold for 
hypertriglyceridemia is lower in individuals at higher risk 
for atherosclerosis compared to generally healthy indi-
viduals [27]. When triglyceride concentrations persist 
above 400 mg/dL despite lifestyle interventions, fibrates 
may be prescribed [28]. Fenofibrate and gemfibrozil are 
often recommended as first-line therapies [29]. Omega-3 
fatty acids can also be administered separately or in com-
bination with other treatments as needed [30]. Statins are 
typically less effective for treating hypertriglyceridemia 
alone, especially when LDL cholesterol levels are already 
low [31]. However, patients diagnosed with atheroscle-
rosis should receive statins regardless of their LDL levels 
[32].

LDL hypercholesterolemia
According to European guidelines, LDL cholesterol tar-
gets should be tailored to an individual’s overall risk 
profile. If lifestyle modifications fail to achieve target lev-
els, the initial step in medical intervention involves sta-
tin therapy [33]. When treatment goals are not reached 
within 4 to 6 weeks, dosage adjustments or additional 
interventions may be necessary. For high-risk individu-
als, lifestyle modifications and statin therapy should be 
initiated simultaneously. If statins alone are insufficient 
to achieve desired LDL levels, ezetimibe is recommended 
as an add-on therapy [34]. In cases where the combina-
tion of statins and ezetimibe fails, PCSK9 inhibitors may 
be considered as an alternative treatment option [35]. For 
patients with atherosclerosis and resistant LDL hyper-
cholesterolemia, repeated lipid apheresis may serve as a 
final option [36]. Other statins such as lovastatin, fluvas-
tatin, pravastatin, rosuvastatin, and pitavastatin are used 
less frequently. Fluvastatin and pravastatin are associ-
ated with fewer side effects compared to atorvastatin and 
simvastatin [37]. Rosuvastatin, known for its potency in 
reducing LDL cholesterol levels, has shown promising 
results in preclinical studies, with ongoing clinical tri-
als providing further insights [37]. Acute coronary syn-
drome (ACS) is a distinct medical condition. Preliminary 
research suggests that early administration of high-dose 
statins may improve outcomes in ACS patients, poten-
tially by mechanisms independent of LDL cholesterol’s 
impact on endothelial function [35]. However, these find-
ings should be interpreted cautiously, as most guidelines 
recommend high-dose statins for ACS management.

Mixed hyperlipoproteinemia
Mixed hyperlipoproteinemia, characterized by elevated 
levels of both LDL cholesterol and triglycerides, is the 

most common lipid metabolism disorder among individ-
uals with diabetes, primarily due to its association with 
metabolic syndrome [38]. Lifestyle modification remains 
the cornerstone of management [39]. If lifestyle changes 
and statin therapy fail to normalize lipid levels or triglyc-
eride concentrations, a combination treatment approach 
may be necessary. Although statins can be combined with 
omega-3 fatty acids or fibrates, the effectiveness of these 
combinations has been inconsistent in endpoint trials 
[40]. Inadequate trial design limits definitive conclusions, 
despite both classes of medications demonstrating car-
diovascular risk reduction in individual therapy studies. 
At our facility, we employ a combination of statins with 
fibrates or omega-3 fatty acids for patients at extremely 
high cardiovascular risk and with concurrent lipid 
metabolism disorders, only after all other methods for 
reducing LDL cholesterol have been exhausted [41, 42].

Lipid dysregulation plays a crucial role in various 
diseases
Fluctuations in lipid levels significantly impact health, 
underscoring their critical role in disease development. 
High-density lipoprotein (HDL), often termed “good 
cholesterol,” facilitates the removal of harmful lipids. 
In contrast, the accumulation of low-density lipopro-
tein (LDL) and triglycerides, categorized as “bad lipids,” 
damages arterial walls and contributes to cardiovas-
cular diseases [43]. Recent studies have linked lipid 
metabolism abnormalities to over 80 diseases, high-
lighting their complex biological implications. These 
investigations explore metabolic pathways, including 
nonlysosomal sphingolipids and acylceramides, to bet-
ter understand lipid biology [44, 45]. Fredrickson’s clas-
sification system categorizes lipid metabolism disorders 
into five types based on their underlying pathways and 
associated health conditions [46]. Hyperlipidemia, as 
described by Natesan and Kim (2021), refers to the path-
ological elevation of lipids in the bloodstream, which 
increases the risk of severe health conditions [47]. This 
group of disorders is characterized by elevated levels 
of undesirable lipids, with the classification of specific 
metabolic diseases dependent on abnormalities in dif-
ferent lipoprotein classes (Fig.  1). Structural defects in 
lipoproteins, apolipoproteins, or lipid transfer proteins 
are often implicated in these disorders. A key regula-
tory role in lipid metabolism is played by peroxisome 
proliferator-activated receptors (PPARs), also known as 
nuclear fatty acid receptors. These receptors influence 
pathways associated with obesity-related metabolic dis-
orders such as coronary artery disease, hyperlipidemia, 
and insulin resistance. PPARs have also been explored as 
therapeutic targets for managing these diseases [48, 49]. 
Postmenopausal women are particularly susceptible to 
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lipid metabolism disorders, including osteoporosis and 
atherosclerosis, which are pressing global health con-
cerns [50]. Excessive lipid accumulation in muscle fibers 
is linked to the development of myopathy and carnitine 
deficiency, further emphasizing the broad implications of 
lipid dysregulation [51]. Dysregulation in lipid metabolic 
pathways is associated with numerous diseases, including 
conditions resulting from excessive lipid accumulation 

such as xanthomas, Bassen-Kornzweig syndrome, chy-
lomicronemia syndrome, familial lipoprotein lipase 
deficiency, Niemann-Pick disease (types A and B), GM1 
and GM2 gangliosidoses, methylmalonic acidemia, and 
Gaucher disease [52]. Acquired hyperlipidemia, a signifi-
cant contributor to lipid dysregulation, is often triggered 
by secondary factors such as diabetes, excessive alcohol 
consumption, hypothyroidism, renal diseases, nephrotic 

Fig. 1 Lipid metabolism disorder
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syndrome, or long-term use of medications like diuretics, 
estrogens, and β-blockers [47].

Obesity‑related diseases and neurodegenerative disorders
Obesity exerts a multifaceted impact on physiological 
functions across various organs, culminating in a general 
decline in health. In the brain, obesity precipitates a spec-
trum of homeostatic imbalances, including heightened 
cellular oxidative burden, swelling, protein accumulation, 
disrupted mitochondrial function, hormonal dysregula-
tion, insulin resistance, and impaired blood-brain barrier 
(BBB) integrity [53]. These disruptions diversely affect 
synaptic plasticity, neurogenesis, and neuronal survival, 
resulting in cognitive impairments [54]. Early-life obe-
sity induced by diet has enduring effects due to changes 
in the innate defense system, extending beyond address-
ing metabolic issues. Stearic acid, via Toll-like receptor 
4 (TLR4), alters chromatin structure, enhancing bind-
ing site availability for activator protein-1, which signals 
myeloid cells to shift from oxidative phosphorylation to 
glycolysis, thereby initiating pro-inflammatory cytokine 
production [55].

Chronic inflammation in obesity, driven by hyper-
trophic adipocytes, triggers endoplasmic reticulum 
stress, activation of inflammatory pathways, and insulin 
resistance [56]. This persistent inflammation is marked 
by altered cytokine and adipokine profiles from dysfunc-
tional adipose tissue, recruitment of macrophages and 
lymphocytes, which exacerbates insulin resistance and 
inflammation [57]. Insulin-resistant adipocytes elevate 
circulating free fatty acids, activating TLR4 in B cells and 
leading to the production of pro-inflammatory cytokines 
such as TNF-α and IL-6 [58]. Leptin and adiponectin, pri-
marily produced by adipocytes, modulate inflammation 
and play pivotal roles in glucose and lipid metabolism as 
well as energy homeostasis [59]. With increased fat mass, 
leptin levels rise while adiponectin decreases, leading to 
leptin resistance, lipid accumulation, lipotoxicity, and 
insulin resistance [60]. Furthermore, diminished activa-
tion of AMP-activated protein kinase (AMPK), a crucial 
regulator of cellular metabolism and energy homeostasis, 
is seen, impacting glucose and free fatty acid uptake, cell 
cycle progression, mRNA stability, and apoptosis [61]. 
In obesity, high-fat diet studies show decreased AMPK 
activation in white adipose tissue (WAT), heart, and 
liver, associated with mitochondrial dysfunction, reduced 
fatty acid oxidation, and activation of NF-κB signaling, 
contributing to metabolic inflammation and oxidative 
stress [62]. Furthermore, hyperleptinemia and decreased 
cerebrospinal fluid leptin levels suggest impaired leptin 
transport across the BBB, contributing to leptin resist-
ance [63].

Leptin is crucial for immune system performance, 
influencing immune cells such as  CD4+,  CD8+ T cells, 
regulatory T cells (Treg), natural killer cells (NK), and 
monocytes or macrophages [64]. Adiponectin, inversely 
related to adiposity, exhibits a plethora of beneficial prop-
erties including insulin-sensitizing, anti-inflammatory, 
anti-apoptotic, anti-atherosclerotic, and neuroprotec-
tive properties [65]. In the context of obesity, adiponec-
tin reduction is influenced by mechanisms such as DNA 
methylation, where DNA hypermethylation in adipocytes 
leads to the downregulated adiponectin gene expression 
[66]. Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, 
is crucial for regulating metabolic responses to nutrient 
availability. It supports fatty acid β-oxidation, maintains 
cholesterol and bile acid levels, and aids in neuronal 
survival and differentiation [67]. However, SIRT1 is 
repressed in obesity, which contributes to insulin resist-
ance, non-alcoholic fatty liver disease, and imbalance in 
energy balance [68].

Neurotrophins like nerve growth factor (NGF) and 
brain-derived neurotrophic factor (BDNF) are important 
for nerve growth and survival and also influence glucose, 
lipid, and energy homeostasis. Lower concentrations of 
NGF and BDNF in metabolic syndrome conditions sug-
gest their participation in atherosclerosis and metabolic 
dysfunction [69]. Gene mutations affecting BDNF or its 
receptor Trkβ can lead to excessive eating and obesity. 
BDNF gene expression is influenced by nutritional, glu-
cose levels, and anorexigenic hormones, thereby affect-
ing satiety regulation [70]. Obesity induces chronic 
low-grade inflammation, affecting brain metabolism, BBB 
integrity, and cognitive functions. Overconsumption of 
high-carbohydrate and high-fat foods in obesity impairs 
cerebral glucose metabolism, contributing to neurode-
generative diseases [71]. Obesity-related inflammation 
and insulin resistance disrupt insulin transporters at the 
BBB, facilitating leukocyte infiltration into the central 
nervous system (CNS), and promoting neurodegenera-
tive diseases [72]. Increased expression of microglia and 
astrocytic markers, along with elevated cytokine levels 
in high-fat diet (HFD) mice, highlights the inflammatory 
response in the CNS [73]. Mitochondrial dysfunction 
in obesity affects brain energy demand, contributing to 
cognitive decline and neurodegeneration [74]. HFD-
induced mitochondrial disturbances reduce oxidative 
capacity in the brain cortex, affecting synaptic plasticity 
and energy metabolism, leading to cognitive impairment 
[75]. Increased lipid peroxidation, ROS production, and 
decreased ATP production further exacerbate cogni-
tive decline [76]. The gut-brain axis is crucial in obesity-
related CNS complications. Gut microbiota diversity 
significantly impacts brain development and cognitive 
function. HFD-induced changes in gut microbiota are 
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linked to reduced synaptic plasticity and cognitive func-
tions [77]. Obesity-associated gut dysbiosis releases bac-
terial toxins like lipopolysaccharide (LPS), affecting CNS 
inflammation and cognitive functions (Fig. 2) [78].

Dyslipidemia and Cardiovascular Disease (CVD)
Cardiovascular diseases (CVD) remain the top cause 
of morbidity and mortality globally, with dyslipidemia 
being a critical risk factor [79]. Dyslipidemia, character-
ized by aberrant lipid levels in the bloodstream, is pri-
marily identified by elevated cholesterol levels, known 
as hypercholesterolemia [79]. Among the various lipo-
proteins, low-density lipoprotein (LDL), which contains 
apolipoprotein B (ApoB), predominates in plasma and 
is crucial for cholesterol transport to blood vessel walls 
[80]. Elevated LDL cholesterol is a significant hallmark 
of dyslipidemia and closely linked to an increased risk of 
atherosclerotic cardiovascular disease (ASCVD). Exten-
sive epidemiological, clinical, and experimental research 
underscores the significance of LDL cholesterol, along 
with its oxidized forms, as principal drivers of atheroscle-
rosis and its progression. Consequently, reducing LDL 
cholesterol levels has become a cornerstone of both the 
treatment and prevention strategies for ASCVD [81, 82].

The effectiveness of lipid-lowering therapies in manag-
ing LDL cholesterol levels is well-documented. Statins, 
which inhibit hepatic cholesterol synthesis, are the most 
frequently prescribed agents and are considered the 
cornerstone of LDL cholesterol reduction [83]. These 
medications have demonstrated substantial benefits in 
reducing cardiovascular disease incidence. When statins 
alone do not achieve optimal LDL cholesterol levels, 
additional therapies are employed. Ezetimibe, which 
inhibits the Niemann-Pick C1-like 1 (NPC1L1) protein 

involved in cholesterol absorption, is often combined 
with statins to further reduce LDL cholesterol levels [84]. 
Despite their effectiveness, many patients struggle to 
reach target LDL levels with statins and NPC1L1 inhibi-
tors alone. Additionally, statins may cause muscle-related 
side effects in some patients, complicating their use [84]. 
In recent years, non-statin lipid-lowering agents have 
emerged as new options for managing dyslipidemia. One 
of the most promising advancements is the development 
of protein convertase subtilisin/kexin type 9 (PCSK9) 
inhibitors [85]. PCSK9 is a protein that mediates the 
degradation of hepatic LDL receptors, which are crucial 
for clearing LDL cholesterol from the bloodstream [86]. 
Monoclonal antibodies targeting PCSK9, such as evo-
locumab and alirocumab, have shown remarkable efficacy 
in reducing LDL cholesterol levels by 50–60%, surpassing 
the reductions achievable with NPC1L1 inhibitors [87]. 
However, the high cost and injection-based delivery of 
these agents limit their accessibility. To overcome these 
challenges, innovative approaches including antisense 
oligonucleotides, genome editing, and vaccines, are being 
developed, offering potential improvements in durability, 
more convenient administration, and cost-effectiveness 
[88].

Bempedoic acid represents a novel addition to lipid-
lowering treatment. This agent functions by inhibit-
ing adenosine triphosphate-citrate lyase, an enzyme 
involved in the cholesterol biosynthesis pathway, posi-
tioned upstream of the hydroxymethylglutaryl coenzyme 
A (HMG-CoA) reductase, the target of statins. Clinical 
trials have demonstrated that bempedoic acid effectively 
lowers LDL cholesterol levels, leading to its approval by 
both the United States Food and Drug Administration 
(FDA) and the European Medicines Agency (EMA) for 

Fig. 2 Pathophysiological pathway from obesity to neurodegenerative diseases



Page 8 of 21Dakal et al. Lipids in Health and Disease           (2025) 24:61 

treating hypercholesterolemia [89]. Beyond LDL choles-
terol, other apolipoprotein B-containing lipoproteins, like 
lipoprotein(a) (Lp(a)) and triglyceride-rich lipoproteins, 
also contribute to cardiovascular risk [90]. Elevated Lp(a) 
levels, which remain largely unaffected by conventional 
lipid-lowering therapies, are associated with an increased 
risk of ASCVD independent of LDL cholesterol levels. 
Although the novel PCSK9 inhibitor evolocumab can 
reduce Lp(a) by approximately 20–30%, traditional lipid-
lowering drugs have limited impact on Lp(a) levels [91]. 
A promising new approach involves olpasiran, a small 
interfering RNA conjugated with acetylgalactosamine 
that targets hepatic Lp(a) production. Phase 2 trials have 
shown that olpasiran can reduce Lp(a) levels by over 90%, 
with further research needed to evaluate its impact on 
cardiovascular outcomes [92].

Effective and economical agents for lowering triglyc-
erides include fibrates, niacin, and omega-3 fatty acids 
[93]. These treatments help manage plasma triglyceride 
levels, which serve as biomarkers for various triglycer-
ide-rich lipoproteins, such as chylomicron remnants, 
very low-density lipoprotein (VLDL), and intermediate-
density lipoprotein (IDL) [94]. Elevated triglycerides 
are linked to increased atherosclerosis risk. Lipopro-
tein lipase (LPL), the enzyme responsible for triglycer-
ide breakdown, is critical in this process. Reduced LPL 
activity or levels can lead to increased triglyceride and 
triglyceride-rich lipoprotein concentrations [95]. New 
therapies targeting apolipoprotein C3 and angiopoietin-
like protein 3 (ANGPTL3) have proven to be effective in 
reducing triglyceride levels. For instance, volanesorsen, 
an antisense oligonucleotide targeting apolipoprotein C3, 
has been shown to reduce plasma triglyceride levels by 
approximately 70% [96], while inhibitors of ANGPTL3, 
such as evinacumab and vupanorsen, have significantly 
reduced circulating triglycerides and LDL cholesterol 
[97]. High-density lipoprotein (HDL) cholesterol, rich in 
apolipoprotein A-I, is traditionally linked to a lower risk 
of ASCVD due to its anti-inflammatory and anti-ather-
ogenic properties. However, recent evidence suggests 
that merely increasing HDL cholesterol levels may not 
improve cardiovascular outcomes and could even raise 
non-cardiovascular disease risk. This has led to a shift in 
focus towards enhancing the quality of HDL rather than 
merely increasing its quantity [98].

Cardiac lipid dysregulation
Cardiac lipid dysregulation encompasses the anomalous 
processing and accumulation of lipids within the heart, 
significantly impacting cardiovascular health. This pro-
cess involves a series of steps, including lipid uptake, 
fatty acid oxidation, and esterification, all regulated by 
various proteins and enzymes such as fatty acid transport 

proteins (FATPs), carnitine palmitoyltransferase 1 
(CPT1), and acyl-CoA dehydrogenases [99].

This chronic buildup primarily includes triglycer-
ides, free fatty acids, and ceramides. Such accumulation 
impairs cellular function by inducing oxidative stress and 
inflammation, ultimately contributing to cardiac dys-
function and failure [100]. Additionally, alterations in 
phospholipid metabolism, such as changes in cardiolipin 
composition, impact mitochondrial function and can 
exacerbate ischemic injury and cardiomyopathy [101]. 
Lipid transport mechanisms, such as those involving 
FATPs and fatty acid-binding proteins (FABPs), can influ-
ence the extent of lipid accumulation in cardiomyocytes 
[102]. Furthermore, lipid synthesis pathways, including 
those regulated by HMG-CoA reductase and adenosine 
triphosphate-citrate lyase (ACL), are critical in maintain-
ing lipid balance and mitigating dysregulation [103]. Spe-
cific lipid species, like ceramides and altered cardiolipin, 
are particularly relevant in the context of cardiac disease, 
as they contribute to fibrosis, impaired function, and 
increased susceptibility to ischemic events [104].

Diagnosis of lipid associated disorders 
and diseases
Clinical and laboratory evaluation
The diagnosis of lipid disorders necessitates a compre-
hensive approach that integrates both clinical evalua-
tion and laboratory testing. Clinicians gather a detailed 
patient history and perform a thorough physical exami-
nation, assessing lifestyle factors like diet, exercise, and 
alcohol consumption and smoking habits, as well as any 
family history of lipid disorders or cardiovascular dis-
eases. This evaluation is critical for identifying genetic 
predispositions, like hypercholesterolemia (FH), and 
physical signs like xanthomas and corneal arcus, which 
may indicate severe dyslipidemia. The laboratory assess-
ment commences with a lipid profile, measuring total 
cholesterol (TC), low-density lipoprotein cholesterol 
(LDL-C), high-density lipoprotein cholesterol (HDL-C), 
and triglycerides (TG). LDL-C, often referred to as ‘bad 
cholesterol’ due to its role in atherogenesis, is a primary 
focus, whereas HDL-C, known as ‘good cholesterol,’ 
offers protective cardiovascular benefits [105]. Elevated 
triglycerides are also important, indicating potential 
cardiovascular risk and underlying metabolic issues. 
Advanced testing, including the measurement of apoli-
poproteins such as Apolipoprotein B (ApoB) and Apoli-
poprotein A-I (ApoA-I), provides additional insight into 
lipid-related risks. ApoB, in particular, offers a superior 
prediction of cardiovascular risk compared to LDL-C 
alone. Additionally, the measurement of Lipoprotein(a) 
[Lp(a)], an independent cardiovascular risk factor, is cru-
cial for individuals with a significant family history of 
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early heart disease or unexplained cardiovascular events 
[106].

Genetic testing
Genetic testing is indispensable in the diagnosis of lipid 
disorders, particularly hereditary conditions like Famil-
ial Hypercholesterolemia (FH). FH is characterized by 
elevated levels of low-density lipoprotein cholesterol 
(LDL-C), significantly increasing the risk of premature 
cardiovascular disease. Diagnostic testing for FH typi-
cally screens for mutations in three pivotal genes: LDLR, 
APOB, and PCSK9 [107]. LDLR gene mutations impede 
the body’s capacity to clear LDL cholesterol, while APOB 
mutations disrupt the binding of LDL particles to recep-
tors. Gain-of-function mutations in PCSK9 exacerbate 
LDL receptor degradation, thereby further elevating 
LDL-C levels. Identifying these genetic mutations con-
firms an FH diagnosis and enables cascade screening of 
family members, facilitating early intervention and treat-
ment [108].

Beyond monogenic disorders like FH, numerous 
lipid abnormalities are polygenic, arising from multiple 
genetic variants [109]. Increased risks of conditions such 
as hypercholesterolemia, hypertriglyceridemia, or low 
HDL-C levels can be analyzed by specific single nucleo-
tide polymorphisms (SNPs). Polygenic risk scores, which 
aggregate the effects of these SNPs, provide a compre-
hensive risk assessment, especially when integrated with 
clinical and lifestyle factors [110]. This genetic informa-
tion is crucial for personalized medicine, as it allows for 
tailored treatment strategies. For example, individuals 
with certain genetic profiles may exhibit a more favorable 
impact to explicit lipid-lowering remedies, such as statins 
or PCSK9 inhibitors [111]. Additionally, some genetic 
variants can predict adverse drug reactions, thereby ena-
bling safer and more efficacious treatment choices [112].

Genetic testing also encompasses important considera-
tions related to genetic counseling and ethics. Patients 
undergoing testing should receive appropriate counseling 
to understand the implications of their results, includ-
ing potential psychological impacts and the necessity to 
inform family members who may also be at risk. Ethical 
considerations include issues of privacy, informed con-
sent, and the potential for genetic discrimination in 
employment or insurance, which must be addressed to 
safeguard patient rights and confidentiality [113].

Emerging biomarkers and techniques for diagnosis
The landscape of lipid disorder diagnostics is continu-
ally evolving, with the advent of novel biomarkers and 
advanced analytical techniques significantly enhancing 
our grasp of lipid metabolism and cardiovascular risk. 
Traditional lipid panels encompassing total cholesterol, 

LDL-C, HDL-C, and triglycerides provide a foundational 
assessment but fail to capture the intricate complexity 
of lipid particles. Advanced lipoprotein testing, such as 
nuclear magnetic resonance (NMR) spectroscopy and 
ion mobility analysis, offers detailed insights by measur-
ing the size, number, and density of lipoprotein particles 
[114]. Apolipoproteins, notably ApoB and Lipoprotein(a) 
[Lp(a)], serve as vital biomarkers; ApoB reflects the total 
number of atherogenic particles, while high Lp(a) levels 
are linked to increased cardiovascular risk, especially in 
conditions like familial hypercholesterolemia (FH) [115]. 
Inflammatory markers, such as high-sensitivity C-reac-
tive protein (hs-CRP), and assessments of endothelial 
function, including flow-mediated dilation (FMD), pro-
vide additional insights into systemic inflammation and 
vascular health [116]. Non-invasive imaging techniques, 
like carotid intima-media thickness (CIMT) measure-
ment and coronary artery calcium (CAC) scoring, are 
crucial for evaluating atherosclerosis and predicting car-
diovascular events [117]. Emerging fields like proteomics 
and metabolomics are identifying novel biomarkers and 
pathways in lipid metabolism, offering profound insights 
into disease mechanisms and potential therapeutic tar-
gets [118].

The integration of advanced technologies has revo-
lutionized the ability to monitor emerging biomarkers, 
ensuring more precise and dynamic tracking of lipid 
metabolism and cardiovascular risk. Mass spectrome-
try-based proteomics and metabolomics platforms are 
increasingly utilized to identify and quantify apolipo-
proteins, lipid metabolites, and inflammatory mediators 
with high sensitivity and specificity. For example, tan-
dem mass spectrometry (LC-MS/MS) allows simultane-
ous measurement of ApoB, ApoA1, and Lipoprotein(a), 
providing a comprehensive lipid profile in a single assay 
[119]. Imaging technologies, such as fluorescence-based 
microscopy and near-infrared spectroscopy (NIRS), are 
used for the direct visualization of lipid deposition in 
arterial walls, offering real-time insights into athero-
sclerotic plaque composition and progression [120]. For 
systemic biomarkers like hs-CRP, enzyme-linked immu-
nosorbent assays (ELISA) remain a gold standard for 
quantification in both research and clinical settings [121]. 
Additionally, microfluidic biosensors and lab-on-a-chip 
platforms are emerging as portable, rapid, and cost-
effective tools for monitoring lipid-related biomarkers in 
point-of-care settings. These devices integrate multiple 
detection modalities to assess biomarkers such as ApoB, 
Lp(a), and inflammatory proteins with minimal sample 
volume and turnaround time [122]. Furthermore, molec-
ular imaging techniques like PET-CT are being explored 
for tracking molecular-level changes in lipid and inflam-
matory pathways, particularly in research scenarios 
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focusing on drug efficacy and disease progression [122]. 
Continuous biomarker monitoring is integral to pre-
ventive therapy, enabling early detection of lipid abnor-
malities and timely intervention. Advances in wearable 
devices and point-of-care testing provide real-time data 
on markers like LDL-C, Lp(a), and hs-CRP, guiding 
personalized lifestyle and pharmacological strategies. 
By integrating such monitoring with predictive analyt-
ics, clinicians can proactively mitigate cardiovascular 
risks, emphasizing a shift from reactive to preventive 
care [123, 124].

Therapeutic advancements
Advances in treatment of lipid associated disorders
Treating lipid-associated disorders involves a multifac-
eted approach that extends beyond standard pharmaco-
logical therapies to encompass advanced interventions 
and lifestyle modifications. While medications such as 
statins, PCSK9 inhibitors, and newer agents like bem-
pedoic acid are pivotal in managing lipid levels, lifestyle 
changes form the cornerstone of effective treatment 
[125]. Additionally, regular physical activity—aiming 
for 150  min of reasonable physical activity per week, 
not only aids in weight management but also positively 
influences HDL cholesterol and triglyceride levels [125]. 
Patient education and adherence to treatment are vital 
components of successful management. Creating aware-
ness among patients on the significance of medication 
observance, probable side effects, and lifestyle modi-
fications can improve treatment results. Tools such as 
mobile health apps provide support for monitoring medi-
cation adherence and lifestyle modifications, offering 
feedback and support to patients [126]. Comorbid condi-
tions such as diabetes and hypertension often accompany 
lipid disorders and must be managed concurrently. Effec-
tive regulation of blood glucose levels in diabetic patients 
can improve lipid profiles, while managing hypertension 
helps reduce the cardiovascular risks associated with dys-
lipidemia (Table 2) [127].

The advent of personalized medicine represents a mon-
umental advancement in lipid disorder treatment [147]. 
Pharmacogenomic testing enables the tailoring thera-
pies grounded on a person’s genetic profile, augmenting 
treatment efficacy and lessening adverse reactions. Novel 
therapeutic approaches like RNA-based therapies like 
inclisiran, target specific RNA molecules to modulate 
lipid metabolism, offering promising results in reducing 
LDL cholesterol levels with less frequent dosing [148]. 
Additionally, gene-editing technologies and antisense oli-
gonucleotides are being explored as potential treatments 
for genetic lipid disorders, showing the potential to revo-
lutionize current therapeutic paradigms (Table  2) [149]. 
Integrative approaches, including dietary supplements 

like incorporating omega-3 fatty acids, plant sterols, and 
antioxidants, may also support cardiovascular health. 
However, these supplements should complement rather 
than replace mainstream medicine and be used under 
medical surveillance to avoid interactions with pre-
scribed medications [150].

Advances in lipid metabolism and cancer: implications 
for colon and pancreatic cancers
Significant progress in cancer research has elucidated the 
intricate interplay between lipid metabolism and tumor 
development, particularly in colon and pancreatic can-
cers. Recent technological breakthroughs have enabled 
researchers to delve deeper into the metabolic signatures 
and reprogramming that characterize these malignan-
cies, offering new insights into potential therapeutic tar-
gets and diagnostic biomarkers. One key area of focus 
has been the exploration of metabolomic approaches 
to predict cancer behavior and response to treatment. 
Metabolomics has developed as a commanding tool in 
cancer research, allowing for the identification of unique 
metabolic signatures related to various cancer types, 
including colon and pancreatic cancers [151].

Cancer cells frequently exhibit a distinct metabolic 
phenotype, characterized by alterations in lipid metabo-
lism that underpin their rapid proliferation and survival 
[152]. These metabolic transformations, collectively 
known as “metabolic reprogramming,” empower cancer 
cells to generate energy, macromolecules, and signaling 
molecules more efficiently, fueling their uncontrolled 
growth and invasive capabilities [151–154]. Progress in 
systematic platforms, such as chromatography and mass 
spectrometry-based techniques, have eased the analy-
sis of lipid metabolites in cancer cells and tissues. These 
studies have revealed that colon and pancreatic cancers 
often display dysregulation in various lipid metabolic 
pathways, including fatty acid synthesis, lipid oxidation, 
and cholesterol metabolism [152] For instance, it was 
reported that elevated levels of specific fatty acids and 
lipids have been detected in colon and pancreatic can-
cer samples, suggesting their potential as biomarkers 
for early detection and disease monitoring [153]. Can-
cer development and progression of these cancers are 
aligned with dysregulated enzymes, like fatty acid syn-
thase and acetyl-CoA carboxylase [152, 153, 155].

The metabolic relations between tumor cells and their 
adjacent microenvironment, including immune cells and 
stromal cells, have also arisen as a serious factor in cancer 
progression. These intercellular metabolic communica-
tions can significantly influence tumor growth, metas-
tasis, and the response to therapy. Leveraging insights 
from metabolomic studies, researchers are developing 
new therapeutic strategies targeting lipid metabolism 
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in colon and pancreatic cancers. These approaches aim 
to disrupt the metabolic pathways that support tumor 
growth. One promising strategy involves targeting fatty 
acid uptake [152]. Free fatty acids can diffuse across the 
cell membrane, facilitated by proteins like fatty acid bind-
ing proteins (FABPs) and fatty acid transport proteins 
(FATPs). Inhibiting CD36-mediated fatty acid uptake, a 
key process in cancer metastasis, has emerged as a prom-
ising cancer therapy. Studies have shown that CD36 has 
been linked to metastasis of various cancer types, includ-
ing head and neck, ovarian, prostate, breast, lung, renal, 
and gastric cancers, as well as glioblastoma and leukemia. 
Notably, it has been demonstrated that CD36 plays a cru-
cial role in breast cancer metastasis in mice fed a high-
fat diet, and that the systemic deletion of CD36 following 
tumor development can inhibit metastasis. Furthermore, 
CD36 has been linked to resistance to HER2-targeted 
therapy in breast cancer [154].

The expanding understanding of lipid metabolic repro-
gramming in colon and pancreatic cancers is unveil-
ing new avenues for cancer research and treatment. The 
identification of specific metabolic signatures and the 
elucidation of the intricate interplay between tumor cells 
and their microenvironment hold promise for developing 
more effective diagnostic tools and personalized thera-
peutic approaches targeting lipid metabolism in these 
challenging malignancies [151–153]. Currently, there is 
an ongoing effort to develop a humanized CD36-inhib-
itory antibody for potential clinical use, which could 
pave the way for novel targeted therapies by disrupt-
ing the metabolic pathways that support tumor growth. 
Advancements in understanding of lipid uptake and its 
significant contribution to the pathogenesis of colon and 
pancreatic cancers have opened new avenues for cancer 
diagnosis, prognosis, and targeted therapy. The incorpo-
ration of cutting-edge metabolomics technologies with 
other-omics approaches, like that of genomics and tran-
scriptomics, has the potential to unravel the complex 
metabolic landscape of these cancers, ultimately leading 
to more personalized and effective treatment strategies 
[151–153].

Challenges
Lipid dysregulation is implicated in a wide array of health 
conditions, including cancer, metabolic disorders, diabe-
tes, cardiovascular diseases, and neurodegenerative dis-
eases [156]. In cancer, reprogrammed lipid metabolism n 
is intricately linked to oncogenic signals, metastasis, and 
therapeutic resistance [151–157]. Targeting transcrip-
tion factors involved in lipid rewiring offers a promising 
strategy for cancer therapy. Metabolic disorders such 
as brain lipid dysregulation, abnormal lipid profiles and 
lipotoxicity are major contributors to disease onset. Lipid 

dysregulation in the brain is closely related to conditions 
like Alzheimer’s disease, Parkinson’s disease, and fronto-
temporal dementia [158]. Abnormal lipid profiles con-
tribute to insulin resistance, a defining feature of type II 
diabetes. Excessive lipids can cause lipotoxicity, impair-
ing pancreatic beta-cell function. Given that both CVD 
and lipid/metabolic disorders predominantly affect aging 
populations, balancing lipid management with cancer 
treatment becomes increasingly crucial [159]. Cancer cell 
epigenetics also play a role in disrupting lipid metabo-
lism, affecting membrane synthesis, energy production, 
and oxidative stress response. In summary, a comprehen-
sive understanding of lipid dysregulation and developing 
targeted therapies remains essential for managing these 
complex diseases.

Complexity of lipid metabolism
Lipid metabolism encompasses the production, degra-
dation, utilization of various lipid classes, including tri-
glycerides, phospholipids, sphingolipids, and sterols. 
Each class performs distinct cellular functions, such as 
energy conservation, membrane integrity, and signaling. 
Triglycerides serve as energy reservoirs; phospholipids 
are crucial for cellular membrane synthesis and signal-
ing pathways transduction. Sphingolipids are involved in 
apoptosis and cell growth, and sterols like cholesterol are 
vital for membrane fluidity and hormone synthesis [160]. 
The regulation of lipid metabolism is highly dynamic, 
involving enzymes, transport proteins, and signaling 
molecules. Key enzymes like acetyl-CoA carboxylase 
and fatty acid synthase are regulated by hormonal sig-
nals and intracellular metabolites. Transporters, includ-
ing the ATP-binding cassette (ABC) family, facilitate 
lipid distribution. The mechanistic target of rapamycin 
(mTOR) pathway, which coordinates metabolic and sign-
aling networks, is also pivotal in lipid metabolism [161]. 
This metabolic system is interconnected with carbohy-
drate and protein metabolism, with acetyl-CoA serving 
as a central intermediate. Dysregulation of lipid metabo-
lism can result in metabolic diseases like obesity, type II 
diabetes, and cardiovascular diseases [18]. Studying this 
complex system is challenging due to the diversity of lipid 
species and the need for advanced analytical techniques 
like lipidomics. Understanding the intricacies of lipid 
metabolism is essential for developing targeted therapies 
for metabolic diseases.

Pathophysiological roles of lipids
Understanding the pathophysiological roles of lipids is 
inherently complex due to their diverse functions in cel-
lular processes. Dysregulation of these lipids can lead to 
a wide range of pathologies. One significant challenge is 
the dual role of lipids as both structural components and 
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signaling molecules. For instance, disruptions in phos-
pholipid and sphingolipid metabolism can impair cellu-
lar communication and induce apoptosis, contributing to 
conditions like metabolic and neurodegenerative diseases 
[162]. Triglycerides, important for energy storage, can 
lead to metabolic disorders if excessively accumulated, 
complicating the understanding of their regulation [163]. 
In cardiovascular diseases, the complex roles of lipopro-
tein, such as LDL in atherosclerosis and the nuanced pro-
tective role of HDL, pose formidable challenges for the 
effective management of dyslipidemias [164]. In neuro-
degenerative diseases, lipid dysregulation, particularly 
involving sphingolipids and cholesterol, contributes to 
disease pathology through various mechanisms, includ-
ing those summarized in Fig.  3. Technical challenges in 
lipidomics and the need for precise analytical techniques 
further complicate the study of lipid dysregulation [165].

Genetic and environmental factors
The interaction between genetic predisposition and 
ecological aspects significantly augments the complex-
ity of lipid dysregulation. Genetic predispositions, such 
as mutations in genes integral to lipid metabolism, can 
lead to conditions like familial hypercholesterolemia, 
wherein elevated LDL cholesterol level increases car-
diovascular risk [105]. The polygenic nature of numer-
ous lipid disorders complicates the elucidation of 
specific genetic etiologies, necessitating comprehensive 

genetic analysis. Additionally, gene-environment inter-
actions profoundly influence lipid metabolism, with 
environmental factors like diet and physical activity 
either exacerbating or mitigating genetic risks [166]. 
Unhealthy eating habits, including the ingestion of 
saturated and trans fats, can elevate LDL cholesterol 
levels, while physical inactivity is concomitantly associ-
ated with obesity and adverse lipid profiles [167]. These 
factors vary greatly among individuals and popula-
tions, influenced by socioeconomic and cultural con-
texts, thereby complicating the development of uniform 
guidelines and interventions. The burgeoning preva-
lence of lifestyle-related issues, such as obesity and 
inactive behavior, exacerbates the challenge of manag-
ing lipid dysregulation on a population level [168].

The interaction between genetic and environmental 
factors poses additional challenges, as individuals with 
genetic susceptibilities may experience amplified effects 
from adverse environmental conditions. Conversely, sal-
utary lifestyle choices can occasionally counteract genetic 
risks. Understanding these complex interactions is para-
mount for personalized medicine, which aspires to tailor 
prevention and treatment strategies based on individual 
risk profiles. However, this endeavor necessitates exten-
sive research and advanced analytical tools, rendering it 
a resource-intensive pursuit. Addressing these challenges 
is critical for the development of effective interventions 
and enhancement of overall metabolic health [168].

Fig. 3 Mechanisms contributing to neurodegenerative disorders related to lipid dysregulation
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Diagnostic and therapeutic challenges
Lipid dysregulation presents formidable challenges in 
both diagnosis and treatment due to the complicated 
nature of lipid metabolism and the various roles lipids 
serve in the body. Standard lipid panels measuring total 
cholesterol, LDL, HDL, and triglycerides do not fully cap-
ture the nuances of lipid abnormalities [169]. For exam-
ple, small, dense LDL particles are more atherogenic than 
bigger counterparts, yet this is not typically assessed. 
Additionally, while HDL is generally considered protec-
tive, its functionality can vary, and dysfunctional HDL 
may contribute to cardiovascular risk. Advanced testing 
methods like NMR spectroscopy and lipidomics can pro-
vide more detailed insights but are prohibitively expen-
sive and not widely accessible [170, 171].

Therapeutically, managing lipid disorders often 
begins with lifestyle alterations, such as changes in diet, 
increased exercise and so on. However, patient adherence 
and variability in response pose significant challenges. 
Pharmacological treatments, such as statins, are com-
monly employed to lower LDL cholesterol, but may not 
be universally effective and can have side effects. Newer 
drugs, like PCSK9 inhibitors, offer more potent LDL 
reduction but are associated with high costs and require 
regular administration [172]. Raising HDL levels and 
improving HDL functionality remain therapeutic chal-
lenges, as some treatments have not consistently shown 
cardiovascular benefits. Additionally, addressing second-
ary causes of dyslipidemia, such as diabetes or hypothy-
roidism, requires a comprehensive treatment approach 
[173]. The imperative for personalized medicine is evi-
dent, as genetic and ecological aspects profoundly influ-
ence lipid metabolism and patient responses to therapies 
[173]. Overcoming these diagnostic and therapeutic chal-
lenges is crucial for better managing lipid-related dis-
eases and improving patient outcomes.

Conclusion
The dysregulation of lipid metabolism is a major fac-
tor in the development of numerous ailments, including 
cardiovascular diseases (CVD), metabolic disorders, and 
neurodegenerative conditions. This analysis in the review 
culminates the intricate ways of lipid metabolism, high-
lighting the role of triglycerides, phospholipids, sphin-
golipids, and cholesterol in sustaining cellular function 
and maintaining systemic homeostasis. Perturbation in 
these processes not only precipitates prevalent condi-
tions like dyslipidemia and atherosclerosis, but also con-
tribute to more multifaceted diseases like Alzheimer’s 
disease, Parkinson’s disease, and certain malignancies.

The therapeutic landscape for lipid-related disorders 
has evolved significantly, with the advent of mediators 
such as PCSK9 inhibitors, bempedoic acid, and antisense 

oligonucleotides targeting apolipoprotein C3 and Lp(a). 
These therapies represent a substantial advancement over 
traditional treatments, offering superior efficacy in lower-
ing lipoprotein cholesterol (LDL-C) levels and addressing 
other lipid abnormalities. However, the exorbitant costs 
and limited accessibility of these advanced therapies pose 
ongoing challenges, particularly in resource-limited set-
tings. Moreover, the reliance on injection-based delivery 
for some of these treatments raises concerns regarding 
patient adherence and long-term management.

Despite the advancements in pharmacotherapy, life-
style modifications remain the cornerstone of manag-
ing lipid disorders. Diet, physical activity, and behavioral 
interventions are essential components of a comprehen-
sive treatment strategy, particularly given the polygenic 
nature of many lipid disorders. The integration of person-
alized medicine, guided by genetic testing and polygenic 
risk scores, offers the potential to tailor treatment strat-
egies more effectively, enhancing both the efficacy and 
safety of interventions. Pharmacogenomics and emerging 
technologies like RNA-based therapies and gene editing 
further expand the therapeutic arsenal, allowing for more 
precise targeting of lipid metabolism pathways.

The advent of lipidomics and advanced diagnostic tech-
niques, including nuclear magnetic resonance (NMR) 
spectroscopy and metabolomics, is revolutionizing our 
understanding of lipid metabolism. These technologies 
provide a more nuanced understanding of lipoprotein 
function, offering new potential biomarkers and treat-
ment targets. As these technologies advance, they hold 
the promise of improving diagnostic accuracy, enabling 
earlier detection of lipid-related disorders, and refining 
treatment strategies to better address individual patient 
needs. Nevertheless, significant challenges remain. The 
intersection of lipid metabolism with other physiologi-
cal systems—such as insulin signaling, inflammatory 
pathways, and mitochondrial function, add complexity to 
both the understanding and treatment of lipid disorders. 
Additionally, the role of environmental factors, includ-
ing diet, lifestyle, and exposure to toxins, in modulating 
lipid metabolism cannot be overlooked, highlighting the 
necessity for a comprehensive treatment approach that 
considers the full spectrum of genetic, environmental, 
and lifestyle influences. Future research should focus 
on elucidating the molecular mechanisms linking lipid 
metabolism with other critical pathways, such as inflam-
mation and mitochondrial function, to identify novel 
therapeutic targets. Investigating the interplay between 
genetic predisposition and environmental influences can 
further refine risk stratification and therapeutic interven-
tions. Additionally, clinical trials assessing the long-term 
efficacy and safety of emerging RNA-based therapies and 
gene-editing approaches are crucial. Expanding access 
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to advanced diagnostics and treatments, particularly 
in resource-limited settings, remains a pressing need to 
ensure equitable healthcare delivery worldwide.

In conclusion, addressing the multifaceted chal-
lenges of lipid dysregulation necessitates an integrative 
approach that combines advanced diagnostic tools, novel 
therapeutic agents, and personalized treatment strate-
gies. As research progresses, it is imperative that these 
insights are seamlessly translated into clinical practice, 
ensuring that the benefits of new therapies are accessible 
to all patients. By embracing a comprehensive and per-
sonalized approach to the management of lipid disorders, 
we can significantly improve outcomes for a wide array of 
diseases and move closer to achieving optimal cardiovas-
cular and metabolic health on a global scale.
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