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Abstract
Background: Mice with a single copy of Mclk1 (a.k.a. Coq7), a gene that encodes a mitochondrial
enzyme required for the biosynthesis of ubiquinone and other functions, live longer than wild-type
mice. The prolonged survival implies a decreased mortality from age-dependent lethal pathologies.
Atherosclerosis is one of the main age-dependent pathologies in humans and can be modeled in
mice that lack Apolipoprotein E (ApoE-/-) or mice that lack the Low Density Lipoprotein Receptor
(LDLr-/-) in addition to being fed an atherosclerosis-inducing diet. We sought to determine if Mclk1
heterozygosity protects against atherosclerosis and dyslipidemia in these models.

Results: We found that Mclk1 heterozygosity did not protect against dyslipidemia, oxidative
stress, or atherosclerosis in young (6 or 10 months) or older (18 months) mice. Furthermore, the
absence of ApoE suppressed the lifespan-promoting effects of Mclk1 heterozygosity.

Conclusion: These findings indicate that although Mclk1 heterozygosity can extend lifespan of
mice, it does not necessarily protect against atherosclerosis. Moreover, in the presence of
hyperlipidemia and chronic inflammation, Mclk1 heterozygosity is incapable of extending lifespan.

Introduction
Median lifespan is increased by mutations in the gene clk-
1, and by heterozygosity for a null allele of the mamma-
lian clk-1 homologue Mclk1, in Caenorhabditis elegans and
mice, respectively [1-3]. CLK-1/MCLK1 is a mitochondrial
hydroxylase required for the biosynthesis of ubiquinone
(UQ or Coenzyme Q) [4,5], a lipid-like molecule that
plays a vital role as an electron transporter in the mito-
chondrial electron transport chain, is an important lipid-
soluble antioxidant, and also performs a variety of other
functions [6]. Mclk1-null (Mclk1-/-) cells and embryos
make no UQ and the embryos are not viable, while Mclk1
heterozygous (Mclk1+/-) cells and mice are superficially
normal and show normal levels of UQ [7,8]. While the
biochemical phenotypes associated with Mclk1 heterozy-

gosity have begun to be uncovered [3,9], the actual effect
on the mouse in terms of resistance to the physical decline
associated with age and to age-dependent disease has not
yet been examined.

The longest-lived humans display an increased resistance
to the common age-dependent diseases (cardiovascular
disease, stroke, cancer, etc.), as the majority of them either
develop these diseases later than the general population
or not at all [10,11]. It is therefore tempting to expect a
similar resistance to the development of age-dependent
diseases in Mclk1+/- and other lines of long-lived mice.
One particularly prevalent age-dependent disease is
atherosclerosis, in which the oxidative modification of
low-density lipoprotein and the resultant recognition by
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cells of the immune system results in a chronic inflamma-
tory state within the wall of blood vessels. This leads to the
formation of a plaque containing a mixture of extracellu-
lar cholesterol deposits, immune cells and infiltrating
smooth muscle cells [12]. Interestingly, manipulations
that extend lifespan in mice have been shown to protect
against atherosclerosis. Among long-lived mice, calori-
cally restricted mice as well as genetically modified p66shc-

/- and UCP1 transgenic mice have been evaluated for
atherosclerosis susceptibility. The fact that both were
found to have an increased resistance to the disease [13-
15] suggests that Mclk1+/- mice may also be resistant to the
disease.

A further incentive for studying the effect of Mclk1 hetero-
zygosity on atherosclerosis is the finding that clk-1 worms
have an altered lipid metabolism, consistent with a
decrease in oxidatively modified lipoproteins [16]. Fur-
thermore, the core non-lipid component of these particles
appears to be vitellogenin, a protein that is homologous
to apolipoprotein B, the main structural component of
atherosclerosis-inducing lipoprotein particles in mam-
mals [17,18]. The conservation of lipid metabolism
between worms and mammals was further confirmed by
the finding that several lipid-lowering drugs developed in
mammals are active on lipoprotein metabolism in worms
[19].

Atherosclerosis does not appear to develop in mice fed a
regular diet, due to the partitioning of most cholesterol
into the anti-atherogenic High Density Lipoprotein frac-
tion of lipoproteins. Therefore, the lifespan extending
effect of Mclk1 heterozygosity cannot be due to a decrease
in atherosclerosis-related mortality. However, the under-
lying conditions thought to be responsible for atheroscle-
rosis, oxidative stress and inflammation, are known to be
strongly associated with aging, justifying the study of
atherosclerosis in aging mice [20,21]. Mice lacking the
Low Density Lipoprotein Receptor and fed a high-fat,
high-cholesterol "Western" diet (LDLr-/-), as well as mice
lacking apolipoprotein E fed a regular chow diet (ApoE-/-),
develop hyperlipidemia and extensive aortic atherosclero-
sis, and are commonly used to model atherosclerosis in
mice [22,23]. Although the lipid profile of these mice is
characteristic of only the more dyslipidemic humans, the
histopathological characteristics of the lesions appear
similar to those observed in humans and other models,
even if they develop over a shorter timeframe [24]. Fur-
thermore, although coronary artery disease predomi-
nately affects those of middle-age or older, the
atherosclerotic lesions that underlie the disease (and
which are the focus of this study) begin to develop much
earlier in life, with young adults having comparable aortic
atherosclerosis to that observed in mice at an equivalent
stage in their lives [25].

We elected to use two separate models because, although
they theoretically affect the same system (the uptake of
lipid from the circulation), they are known to respond dif-
ferently to certain interventions [26-28]. Importantly, the
LDLr-/- model develops more severe atherosclerosis than
the ApoE-/- model, allowing us to measure the effect of
Mclk1 heterozygosity on atherosclerosis of both medium
and high severity. We also measured atherosclerosis in
mice of different ages, in order to detect any possible
impact of an age-dependent effect of Mclk1 heterozygosity
on atherosclerosis. Here, we demonstrate that Mclk1 het-
erozygosity does not consistently affect atherosclerosis or
lipid profile in either model. Furthermore, Mclk1 hetero-
zygosity fails to extend lifespan in atherosclerosis-suscep-
tible ApoE-/- mice.

Methods
Animals and Diet
LDLr-/- [29] and ApoE-\- [30] mice on a C57Bl/6J back-
ground were purchased from The Jackson Laboratory (Bar
Harbor, ME) and were crossed to Mclk1+/- mice, previously
produced by gene targeting [7], to produce LDLr-/-;Mclk1+/

+, LDLr-/-;Mclk1+/-, ApoE-\-; Mclk1+\+ and ApoE-\-; Mclk1+\-

animals. Genotypes were determined by PCR. Mice were
maintained on 4.5% fat rodent chow (Charles River diet
5075). At 3 months of age mice in the LDLr-/- groups were
placed on a "Western"-type diet (Harlan Teklad, Madison,
WI, TD.01444) containing 21% (w/w) anhydrous milk fat
and 0.15% cholesterol. Mice in the ApoE-/- groups were fed
regular rodent chow throughout the experiments. Mice
were housed in a specific pathogen free facility at McGill
University, 2–5 animals per cage, and fasted overnight
prior to sacrifice by anesthetic overdose (Ketamine/Xyla-
zine/Acepromazine).

ApoE-/- mice were sacrificed at 10 and 18 months of age
and LDLr-/- mice at 6 and 10 months of age (Table 1). 18
months was judged the greatest age that we could obtain
without significant losses due to mortality in the ApoE-/-

group. We had originally intended to sacrifice the LDLr-/-

mice at 18 months as well, but we found that after 10
months of age on the "Western" diet LDLr-/- mice devel-
oped severe health problems. The earlier measurement
point for each model is the youngest age where we could

Table 1: Experimental Design

Model Age (months) Gender(s) Background (# Backcrosses)

ApoE-/- 10 M, F CBA × C57BL/6J (4)
10 M, F 129Sv/Balb/c × C57BL/6J (10)
18 F CBA × C57BL/6J (3)

Lifespan M, F 129Sv/Balb/c × C57BL/6J (6)

LDLr-/- 6 M, F CBA × C57BL/6J (3)
10 F 129Sv/Balb/c × C57BL/6J (6)
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reliably obtain measurable atherosclerosis in each case.
For both groups, male and female mice were sacrificed at
the earlier time-point, and females only at the later time-
point.

The genetic backgrounds of the mice varied somewhat
between studies, although they were always consistent
within a study (Table 1). Mice on the CBA background
were backcrossed 3 times into the C57Bl/6J background
to create the LDLr-/- mice sacrificed at 6 months of age and
mice on a mixed 129Sv × Balb/c background were back-
crossed 6 times for LDLr-/- mice sacrificed at 10 months of
age. ApoE-/- mice sacrificed at 10 and 18 months were
backcrossed 4 and 3 times respectively out of the CBA
background, and those used in the aging experiment were
backcrossed 6 times out of a mixed 129Sv × Balb/c back-
ground. A second group of ApoE-/- mice sacrificed at 10
months of age was backcrossed 10 times from the same
background. In all cases, the C57BL/6J strain made the
greatest contribution to the background, which is impor-
tant because of this strain's relative sensitivity to athero-
sclerosis development [31], as well as because the ability
of Mclk1 heterozygosity to extend lifespan in this strain
has been confirmed in our lab [32].

To determine the lifespan of Mclk1+/- mice in the ApoE-/-

background, mice were kept until either natural death, or
evidence of impending mortality (such as sudden drastic
weight loss, lack of movement or a severely distended
abdomen) necessitating euthanasia.

All studies were approved by the McGill Faculty of Science
Animal Care Committee and conducted according to the
guidelines of the Canadian Council on Animal Care.

Atherosclerosis Severity
The surface area of atherosclerotic lesions was measured
on the inner surface of the aorta, from the aortic origin to
the iliac branch point, as has been previously described
[33,34]. Quantification of staining on the acquired
images was carried out using UTHSCSA ImageTool v3.0
(University of Texas Health Science Center in San Anto-
nio, USA), and results were expressed as percentage sur-
face area of the aorta occupied by Oil Red O-staining
lesions. The innominate, common carotid and subclavian
arteries were excluded from the analysis.

Plasma Measurements
EDTA plasma was collected by cardiac puncture of anaes-
thetized mice, flash-frozen in liquid nitrogen and stored
at -80°C. Kits for measuring plasma cholesterol were
obtained from Wako Chemicals USA and those for triglyc-
erides from Sigma-Aldrich. Lipid peroxidation, as quanti-
fied by the level of malondialdehyde (MDA), was
measured with a Thiobarbituric Acid Reactive Substances

(TBARS) Assay Kit from ZeptoMetrix Corporation. The
TBARS method of measuring MDA has received consider-
able criticism for being an insufficiently representative
measurement of lipid peroxidation [35-37]. Despite this,
even some of the harshest critics concede that the assay
frequently yields useful results supported by other better-
validated assays, although it may be better thought of as a
measurement of susceptibility to lipid peroxidation rather
than the steady-state level of damage [37].

Statistics
The non-parametric Mann-Whitney test was used to com-
pare atherosclerosis surface area in prepared aortas. Oth-
erwise, the unpaired two-tailed Student's t-test was used.
Survival curves were compared using the Log-rank (Man-
tel-Cox) test. Two-way ANOVA with Bonferroni posttests
was used for comparing body-weights collected over
lifespan. Comparisons were always made between geno-
types, within genders, using Prism 4.03 (GraphPad Soft-
ware, Inc).

Results
Mclk1 heterozygosity does not decrease the severity of 
atherosclerosis
To determine if Mclk1 heterozygosity protected against
atherosclerosis, Mclk1+/- mice were crossed into athero-
sclerosis-sensitive ApoE-/- and LDLr-/- backgrounds. The
proportion of the inner aortic surface occupied by athero-
sclerotic lesions was then quantified. Atherosclerosis in
both the ApoE-/- and LDLr-/- models of the disease was not
inhibited by Mclk1 heterozygosity (Figures 1 and 2). In
one condition (ApoE-/- mice sacrificed at 10 months of
age), Mclk1+/- females had increased atherosclerosis (6.8
vs. 10 percent of aortic surface area, p = 0.0146). In the
same experiment, there was a 37 percent decrease in
atherosclerosis in Mclk1+/- males that was not statistically
significant (p = 0.21). As the mice in this cohort had only
been backcrossed for four generations, it is possible that
high variability due to genetic heterogeneity could have
been masking an effect of Mclk1 heterozygosity in males.
We therefore repeated this study in a second group of
ApoE-/- mice that had been backcrossed ten generations
onto the C57BL/6J background. In this second cohort of
mice, there was no effect of Mclk1 heterozygosity in either
gender.

In addition, Mclk1 heterozygosity in these atherosclerosis
susceptible backgrounds did not produce any consistent
change in lipid profiles (Table 2), including total plasma
cholesterol and triglycerides. Mclk1+/-; ApoE-/- males sacri-
ficed at 10 months of age had decreased plasma triglycer-
ides. However, when this experiment was repeated in the
fully congenic background, triglycerides were not affected.
Instead, we saw an increase in cholesterol levels. Plasma
lipid peroxidation was never significantly affected. Body
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Heterozygosity for Mclk1 does not prevent atherosclerosis in the LDLr-/- disease modelFigure 1
Heterozygosity for Mclk1 does not prevent atherosclerosis in the LDLr-/- disease model. Atherosclerotic lesions 
that stain with the lipid-sensitive dye Oil Red O were quantified on the inner surface of the aorta in LDLr-/- mice at (A) 6 
months of age, with three backcrosses into C57BL/6J and (B) 10 months of age with six backcrosses into C57BL/6J. F and M 
labels stand for females and males, respectively. The +/+ and +/- labels stand for the Mclk1+/+ and Mclk1+/- genotypes, respec-
tively.
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Heterozygosity for Mclk1 does not prevent atherosclerosis in the ApoE-/- disease modelFigure 2
Heterozygosity for Mclk1 does not prevent atherosclerosis in the ApoE-/- disease model. Atherosclerotic lesions 
that stain with the lipid-sensitive dye Oil Red O were quantified on the inner surface of the aorta in ApoE-/- mice at (A) 10 
months, initial trial with four backcrosses into C57BL/6J, (B) 10 months, second trial with ten backcrosses into C57BL/6J and 
(C) 18 months, with three backcrosses into C57BL/6J. F and M labels stand for females and males, respectively. The +/+ and +/
- labels stand for the Mclk1+/+ and Mclk1+/- genotypes, respectively.
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weight of female LDLr-/-; Mclk1+/- mice sacrificed at six
months of age was slightly decreased, but we did not see
an effect on body weight in any other group.

Loss of ApoE suppresses the lifespan extension conferred 
by Mclk1 heterozygosity
Male and female Mclk1+/- mice on an ApoE-null back-
ground failed to live longer than Mclk1+/+ controls (Figure
3). Female Mclk1+/- mice actually had a shorter average
lifespan than controls, although this difference did not
reach statistical significance (p = 0.16). In Mclk1+/- mice of
both genders, body weight was decreased throughout life
(p < 0.0001 females, p = 0.0064 males) (Figure 3). 21 out
of 35 females and 9 out of 18 males were euthanized as
they were obviously near death due to severe illness (pro-
portions were equal for each genotype), with the remain-
der dying naturally. Atherosclerosis was quantified in
euthanized mice, and Mclk1+/- females appeared to have
decreased atherosclerosis relative to controls, although
this difference did not reach statistical significance (16.4 ±
12.5 in Mclk1+/+ vs. 9.6 ± 5.8 percent in Mclk1+/-, p = 0.18
by Mann-Whitney test). Atherosclerosis was not affected
in males (20.3 ± 14.25 in wild-type vs. 23 ± 16.57 in
Mclk1+/-, p = 0.63). In the group of ApoE-/- mice sacrificed
at 18 months of age, three mice of each genotype died
prior to their date of sacrifice, closely paralleling the sur-
vival curve of mice in the lifespan study.

Discussion
The effect of Mclk1 heterozygosity on atherosclerosis
In five separate studies, we showed that Mclk1 heterozy-
gosity did not ameliorate atherosclerosis in mice. In one
study, female Mclk1+/- mice showed a statistically signifi-
cant increase in atherosclerosis, and males showed a non-

significant decrease. However, we were unable to repeat
either of these results in a follow-up study in which the
mice were in a fully congenic background. Our experi-
ments covered a range of ages and severity of disease, indi-
cating that Mclk1 heterozygosity did not have any
beneficial age-dependent or -independent effects on
atherosclerosis. In other words, we only observed an effect
on atherosclerosis in one particular genetic background,
suggesting that it was due to a unique set of interactions
within this particular background. This forces us to con-
clude that any potential effects of Mclk1 heterozygosity on
atherosclerosis would not be due to the same mechanism
as that which produces lifespan extension, which was
observed in several separate backgrounds.

We have recently reported that young Mclk1+/- mice have
decreased lipid peroxidation, measured via plasma iso-
prostanes. At the same time, the mice had substantial
alterations in mitochondrial function, including a general
decrease in mitochondrial respiration and an increase in
mitochondrial oxidative stress [9]. Mitochondrial dys-
function linked to increased oxidative stress, such as that
found in Mclk1+/- mice, has been shown to increase sus-
ceptibility to atherosclerosis [38]. The balance between
mitochondrial, atherosclerosis-sensitizing and systemic,
potentially atherosclerosis-protective, phenotypes of
Mclk1+/- mice may explain the general absence of a signif-
icant effect on atherosclerosis that we observed. This bal-
ance may be modulated by genetic background, which
could account for some of the contrasting results we
observed between ApoE-/- mice of different backgrounds.
Furthermore, Mclk1+/- mice also have higher levels of sev-
eral pro-inflammatory cytokines (unpublished data).
Inflammation plays a role in all stages of atherosclerosis

Table 2: Plasma lipid characteristics and body weight at sacrifice (expressed as mean ± standard deviation)

Age Sex Mclk1 Cholesterol (mg/dl) Triglycerides (mg/dl) TBARS (nmol MDA/ml) Weight (g)

ApoE-/- 10 months (1) F +/+ 501 ± 120 89 ± 28 33 ± 23 23.7 ± 2.8
+/- 540 ± 97 109 ± 45 38 ± 12 25.4 ± 3.7

M +/+ 529 ± 199 162 ± 51 * 42 ± 33 32 ± 3.5
+/- 454 ± 166 118 ± 47* 23 ± 16 31.2 ± 2.3

10 months (2) F +/+ 337 ± 78 67 ± 20 8.6 ± 2.4 21.9 ± 1.5
+/- 362 ± 67 63 ± 18 7.9 ± 2.4 21.6 ± 1.5

M +/+ 267 ± 94 * 82 ± 27 9.4 ± 4.9 28.2 ± 1.8
+/- 351 ± 112 * 83 ± 22 10.2 ± 6.3 27.9 ± 2.1

18 months F +/+ 726 ± 203 56 ± 24 24 ± 11 26.6 ± 3.4
+/- 747 ± 151 67 ± 16 25 ± 12 28 ± 3.1

LDLr-/- 6 months F +/+ 1599 ± 291 287 ± 130 58 ± 12 28.3 ± 4.8 *
+/- 1600 ± 442 289 ± 119 51 ± 21 24.7 ± 3.4 *

M +/+ 1700 ± 427 477 ± 184 75 ± 25 35.8 ± 4.5
+/- 1723 ± 446 526 ± 223 76 ± 27 35 ± 4.2

10 months F +/+ 1390 ± 387 267 ± 98 24.4 ± 7.1 28.6 ± 4.2
+/- 1343 ± 479 225 ± 71 20.8 ± 5.7 28.4 ± 3.4

*: p < 0.05
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[39], suggesting another possible reason why Mclk1+/-

mice are not protected against the disease.

The effect of mutant clk-1 in C. elegans and Mclk1 in 
mice on lipid metabolism
clk-1 mutant worms have altered oxidative and lipid
metabolism [16,19]. The organismal differences between
worms and mice, as well as other differences between the

two models (homozygous mutants in worms and hetero-
zygous mutants in mice) may explain why we did not the
see the expected effect on lipid metabolism and athero-
sclerosis in Mclk1+/- mice. The clk-1 mutant worms are
homozygous for alleles incapable of producing UQ,
resulting in an obvious, easily observable, phenotype
[2,40]. On the other hand, mice retain one copy of the
wild-type allele, and the MCLK1 produced appears suffi-

Survival curves and body weights throughout lifespan of Mclk1+/+ and+/- mice on the ApoE-/- backgroundFigure 3
Survival curves and body weights throughout lifespan of Mclk1+/+ and+/- mice on the ApoE-/- background. Survival 
of (A) female and (B) males was not affected by Mclk1 heterozygosity. Mice were weighed weekly, and the monthly average was 
plotted with the standard error of the mean for (C) females and (D) males. For both (C) and (D) the difference between gen-
otypes was significant at p < 0.01. F and M labels stand for females and males, respectively. The +/+ and +/- labels stand for the 
Mclk1+/+ and Mclk1+/- genotypes, respectively.
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cient for a normal level of UQ synthesis [3,7,9]. It appears
that, in both worms and mice, MCLK1/CLK-1 has an addi-
tional function besides the production of UQ. This is sup-
ported by evidence from both organisms. In worms, two
mutant alleles of clk-1 yield phenotypes of different sever-
ity, despite the fact that neither allele can produce UQ
[41,42]. Mclk1+/- mice actually have several very clear bio-
chemical phenotypes despite wild-type levels of UQ [3,9].
Yet, the absence of a lipid phenotype in mice suggests the
existence of a threshold that is not reached when CLK-1/
MCLK1 activity is only reduced as in Mclk1+/- mouse
mutants rather than completely abolished or very severely
reduced as in the C. elegans mutants.

Suppression of Mclk1+/- longevity by loss of ApoE
In mice lacking the ApoE protein, Mclk1 heterozygosity no
longer extends lifespan. In other words, some characteris-
tic of the ApoE-/- background actually shortens the lifespan
of Mclk1+/- mice relative to Mclk1+/+ mice. We also
observed that Mclk1+/-; ApoE-/- mice weighed slightly less
than Mclk1+/+; ApoE-/- mice, starting at approximately 1
year of age. This is in contrast to older Mclk1+/- mice wild-
type for ApoE, which either weigh the same or more than
wild-type controls [unpublished data and [1]]. This does
imply that the absence of ApoE has detrimental effects on
Mclk1+/- mice. An increased prevalence of atherosclerosis
is unlikely to be the cause of this lifespan shortening
effect. Firstly, as described above, Mclk1+/- mice do not
appear more susceptible to atherosclerosis development.
If anything, Mclk1+/- female mice in the aging experiment
that were euthanized due to impending death showed a
trend of slightly less aortic atherosclerosis than their wild-
type controls. Secondly, it has been surprisingly difficult
to find evidence in ApoE-/- mice of the arterial occlusion-
induced cardiovascular events that are so lethal to
humans [43]. Although older ApoE-/- mice may develop
atherosclerosis of the coronary arteries, only a small pro-
portion of these are found to display evidence of more
advanced coronary artery disease, such as plaque rupture
[24,44]. Aside from atherosclerosis, ApoE-/- mice suffer
from other conditions, such as increased oxidative stress
[45] and inflammation [46]. As described above, young
Mclk1+/- mice have higher levels of oxidative stress in
mitochondria as well as greater expression of certain
cytokines consistent with a more pro-inflammatory state.
Although these factors by themselves clearly do not pre-
vent the increased longevity of Mclk1+/- mice, they may
exert a negative effect that cancels out the lifespan exten-
sion when combined with corresponding phenotypes in
ApoE-/- mice.

Conclusion
Contrary to our expectations based on the increased lon-
gevity of Mclk1+/- mice, Mclk1 heterozygosity does not pro-
tect against atherosclerosis. This is not surprising in light

of recent findings that suggest a complex pattern of phe-
notypes due to Mclk1 heterozygosity, some of which may
actually facilitate development of a disease such as athero-
sclerosis that involves oxidative stress and inflammation.
Furthermore, Mclk1 heterozygosity does not extend
lifespan in the ApoE-null background, suggesting that
Mclk1 heterozygosity is not capable of protecting against
the increased oxidative stress and inflammation that
afflict ApoE-null mice.
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