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Abstract
The class B scavenger receptor CD36 binds multiple ligands, including oxidized and native
lipoprotein species. CD36 and the related receptor SR-B1 have been localized to caveolae, domains
that participate in cell signaling, transcytosis, and regulation of cellular cholesterol homeostasis.
Previous work has indicated that the ligand preference of CD36 may depend on the cell type in
which it is expressed. To determine if the presence or absence of caveolae is the determining factor
for lipoprotein preference, we treated CHO-CD36 and C32 cells with filipin. Filipin treatment
rapidly increased the binding capacity of CD36 for the native lipoproteins HDL and LDL, but did
not affect the binding capacity of CD36 for oxidized LDL. Filipin treatment affected the distribution
of caveolin and CD36 suggesting that the presence caveolae may modulate the ligand preference
of CD36. However, its molecular mechanism how CD36 and caveolin interaction in regulating
lipoprotein transport remains to be further studied.

Background
Plasma proteins mediate the transport and delivery of lip-
ids. Alterations of the lipoprotein profile present in serum
are associated with the incidence of atherosclerosis. In
particular, increased production of the oxidized form of
the Low Density Lipoprotein (OxLDL), is thought to pre-
cede the appearance of the arterial plaques associated with
atherosclerosis [1-3]. Uptake of OxLDL is enhanced in the
macrophages present in an arterial plaque and can result
in cholesterol accumulation and the formation of foam
cells, a process that is thought to be a key event in the
development of atherosclerosis [3-5], while oxLDL has
been directly implicated in human disease, an under-
standing of the cellular and molecular mechanisms that
control the uptake and efflux of all the lipoprotein classes
and their oxidized products may be central to understand-
ing cholesterol-related diseases.

Several cell surface glycoproteins, including SR-A,
MARCO, CD68, CD36 and SR-B1 are designated as scav-
enger receptors and contribute to the uptake of modified
lipoproteins [6-11]. CD36, an 88 kDa membrane glyco-
protein, is found in several cell types, including platelets,
monocytes, macrophages and endothelial cells [12,13],
CD36 has been reported to be a multifunctional receptor
and it recognizes a wide variety of ligands including
OxLDL [5,10], thrombospondin [14,15], collagen
[16,17], apoptotic neutrophils [18,19], Plasmodium falci-
parum-infected erythrocytes [20,21] and anionic phos-
pholipids [22,23]. Further studies demonstrated that
CD36 expressed in COS 7 or Sf9 cells functioned as a high
affinity receptor not only for OxLDL, but also for HDL,
LDL and VLDL [8,24]. Several regions of CD36 have been
implicated as binding domains for its different ligands,
including amino acids 28–93 as the OxLDL binding
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domain [25], and amino acids 93–120 as the throm-
bospondin binding region [26].

There is increasing evidence that scavenger receptors play
a role in the trafficking of both native and oxidized lipo-
proteins and that the receptor's membrane microenviron-
ment may play a critical role in its function [27,28]
Caveolae are glycosphingolipid and cholesterol-enriched
microdomains that contain the scaffolding protein caveo-
lin, receptors, and signaling proteins [29,30]. Such mem-
brane microdomains have been implicated in cellular
processes such as membrane protein sorting, signal trans-
duction, receptor activation reviewed in [31] and more
recently in cholesterol homeostasis [32] We have previ-
ously demonstrated that the ability of the native lipopro-
teins HDL and LDL, which are responsible for cholesterol
efflux and influx respectively, to inhibit the binding of
pRBCs to human CD36 is dependent on the cell type in
which the receptor was expressed [33,34]. In order to test
the hypothesis that differential CD36 ligand preference is
a result of the receptor's membrane microenvironment,
CD36 expressed in sf9 cells (Sf9-CD36), CD36 stably
transfected into CHO cells (CHO-CD36), and CD36
endogenously expressed by C32 cells was assayed for its
interactions with HDL, LDL and OxLDL. We observed that
all three lipoproteins could bind to CD36 expressed in Sf9
cells, however only OxLDL bound to CHO-CD36 and
C32 cells. Treatment of CHO-CD36 and C32 cells with fil-
ipin, an agent that disrupts caveolae, caused the lipopro-
tein binding profile of C32 and CHO-CD36 cells to
change to that seen in Sf9-CD36 cells. These findings sug-
gest that the binding of native HDL and LDL to CD36
expressed in CHO or C32 cells is normally restricted and
HDL and LDL only interact with CD36 when it leaves the
environment present in caveolae and enters the general
membrane fraction.

Materials and methods
Chemicals and reagents
Grace's insect medium, RPM1 1640, fetal calf serum,
geneticin, and trypsin-EDTA were purchased from Gibco
BRL (Burlington, ON). Filipin was purchased from Sigma
(St. Louis, MO). The anti-CD36 antibody, mAB FA6-152,
was purchased from Immunotech, (Westbrook, ME) and
a polyclonal anti-caveolin antibody was obtained from
Transduction Laboratories (BD Biosciences, Mississauga,
ON).

Cell lines and maintenance
Baculovirus-induced expression of CD36 in Sf9 cells was
as described by Guy et al. [33]. Briefly, a baculovirus con-
taining the human CD36 (hCD36) gene was constructed
using the BacPAK/9 system following the manufacturer's
instructions. The hCD36 construct was modified prior to
generating the recombinant viral expression vector by
reducing the length of the 5' terminus and introducing a

Xho1 restriction suite upstream of the start cordon. These
modifications were made by PCR with the primers 5'-
ACATTGCTCGAGATGGGCTGTGAC CGGA-3' and 5'-
GCAAAGGCCTTGGATGG-3'. The purified 900 bp nucle-
otide fragment was subcloned into pcDNA3 containing
the 762 bp nucleotide fragment 3' of the Stu1 site in
hCD36. The modified 1662 bp hCD36 construct was then
subcloned into pBacPAK/9 vector digested by Xho1 and
Stu1. CHO-CD36 cells stably transfected with hCD36 or
the vector alone (CHO-mock) were maintained in RPMI
1640 supplemented with 10% fetal calf serum, HEPES (6
g/L), sodium bicarbonate (1.8 g/L) and geneticin (50 mg/
L). Sf9 cells were maintained in Grace's Insect Medium
(Gibco) supplemented with 10% FBS and penicillin/
streptomycin, glutamine and kanamycin. C32 cells were
grown in RPMI 1640 supplemented with 10% fetal calf
serum, HEPES (6 g/L), sodium bicarbonate (1.8 g/L) and
gentamicin.

Preparation of lipoprotein and Dil-labelling
Human HDL, LDL, and oxLDL were prepared by differen-
tial density centrifugation as previously described [33].
Labeling of lipoproteins with the fluorescence probe 1,1'
diotsdecyl-3-3-3'-3'-tetramethylindocarbocyanine per-
chlorate (Dil) was carried out according to previous stud-
ies [33,34].

Dil-lipoprotein binding assay
Binding of Dil-labeled lipoprotein to cells was performed
using the method of Calvo et al.[24] with minor modifi-
cation. CHO-CD36, CHO-mock and C32 cells were
grown in 6 or 12 well plates. Prior to staining, cells were
released from their wells by treatment with trypsin-EDTA
(Gibco BRL) and were collected by centrifugation before
being incubated with DiI-labeled lipoproteins at 5–10 μg/
ml in PBS containing 1 mM CaCl2 and 1 mM MgCl2 at
37°C for 1 – 2 hrs. Sf9 cells were cultured in 6-well plates
(Corning, NY) before being incubated with Dil-labeling
lipoproteins at 10 μg/ml at 20°C for 1.5 hrs. After incuba-
tion with Dil-labeling lipoproteins, cells were washed
with cold PBS and then fixed with 4% paraformaldehyde
in PBS for 20 min at room temperature. Stained cells were
then observed with an epi-fluorescence microscope or
subjected to flow cytometry.

Purification of caveolin-enriched membrane fractions
Purification of caveolin-enriched membrane fractions
from CHO-CD36 cells was performed as described by
Smart et al [46] with some modifications. Ten T-75 flasks
(Corning, NY) of confluent CHO-CD36 cells were col-
lected by trypsin-EDTA treatment and centrifugation. The
cells were then resuspended with 1 ml of Buffer A (0.25 M
sucrose, 1 mM EDTA, 20 mM Tricine, pH7.8). The cell sus-
pension was homogenized twice for 30s with a Ultra-Tur-
rax T8 homogenizer (IKA Labortechnik) and the
suspension was transferred into to a 1.5 ml tube and cen-
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trifuged at 1,000 ×g for 10 min. The resulting supernatant,
designated post nuclear supernatant (PNS), was layered
on top of 20 ml of 30% Percoll in Buffer A, and was then
centrifuged at 84,000 × g for 30 min in a Beckman Ti70
rotor. The membrane fraction, a visible band about 5 – 7
cm from the bottom of centrifuge tube, was collected and
the volume was then adjusted to 2 ml with Buffer A, prior
to being placed in a Sorvall TH64 centrifuge tube in ice.
The sample was sonicated twice using an Aquasonic
Model 150T sonicator (PolyScience). A linear 20% – 10%
Optiprep gradient (prepared by diluting Buffer C: 50%
Optiprep in 0.25 M sucrose, 6 mM EDTA and 120 mM tri-
cine, pH.7.8) was layered on the top of the sample and
then the tube was centrifuged at 52,000 ×g for 90 min in
a Sorval TH641 rotor. The top 5 ml of the gradient was
collected, designated as the Optiprep fraction, and placed
in a fresh TH641 centrifuge tube, and mixed with 4 ml of
Buffer C. The sample was then overlaid with 2 ml of 5%
Optiprep (prepared by diluting Buffer C with Buffer A)
and centrifuged at 52,000 ×g for 90 min at 4°C. After cen-
trifugation a distinct opaque band was present in the 5%
Optiprep overlay about 4 – 5 mm above the interface and
was collected and designated as the caveolin-rich mem-
brane fraction.

SDS-PAGE and Western blot analysis of CD36 and 
caveolin
CHO-CD36 and C32 cells, either untreated or treated
with filipin, were collected by trypsin-EDTA treatment
and were re-suspended in lysate buffer (50 mM phosphate
buffered saline, pH 7.4 (PBS) plus 2 mM EDTA and 1% β-

mercaptoethanol) prior to being homogenized. The cell
lysate was centrifuged for 15 min at 14,000 g at 4°C, the
amount of protein present was determined, and the super-
natant was used for SDS PAGE and Western blot analysis.
The samples were loaded on a 10% SDS-polyacrylamide
gel, separated, and transferred onto a nylon-enhanced
nitrocellulose membrane (MSI, Westborough, MA). The
membrane was blocked with a solution of PBS plus 0.1%
Tween-20 (PBST) containing 5% fat-free milk (w/v) for 2
hours at room temperature or overnight at 4°C. A mono-
clonal anti-human CD36 antibody FA6-152 (Immu-
notech) or a polyclonal rabbit anti-caveolin antibody
(Transduction Laboratories) was used at a concentration
of 1:1000 diluted with the blocking solution at room tem-
perature for 4 hours or at 4°C overnight. The presence of
the primary antibodies on the membranes was detected
using either anti-mouse IgG conjugated to HRP, or anti-
rabbit IgG conjugated to HRP (Biolabs, Surrey, BC) at a
dilution of 1:2,500 in PBST with 1% (w/v) fat-free milk
for 1 hour at room temperature. After washing the blot
three times for 10 min each with PBST, the blots were
incubated for 1 min in a mixture of equal volumes of
LumGLO Chemiluminescent Substrates 1 and 2 (Kirke-
gaard & Perry Laboratories, Gaithersburg, MD) before
exposure to Kodak X-Omat film.

Determination of CD36 cell surface levels by flow 
cytometry and immunofluorescent staining
Determination of CD36 surface protein levels on CHO-
CD36, CHO-mock or C32 cells was carried out according
to [27]. Briefly, treated cells were collected and dispensed

Comparison of lipoprotein binding to CD36 expressed in three cell linesFigure 1
Comparison of lipoprotein binding to CD36 expressed in three cell lines. Sf9-CD36, Sf9, CHO-CD36, CHO-mock 
and C32 cells were grown on glass coverslips and incubated with Dil-labeled lipoproteins (as indicated) at 10 ug/ml of lipopro-
tein in culture medium at 37°C for 2 – 4 hours. Dil-labeled lipoproteins was determined by examining the cell layers using a flu-
orescence microscope. Typical images were recorded.
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into a series of tubes. The cells were washed three times
with PBS plus 5% mouse serum for 30 min to reduce non-
specific Ig absorption. The cells were then incubated with
FITC-conjugated anti-human CD36 antibody at a concen-
tration of 1:200 in PBS for 2 hours at room temperature.
After washing 3 times with PBS, 30 μl of the sample was
removed for examination using an epifluorescent micro-
scope (Nikon) and the remaining portion of the sample
was fixed with 4% paraformaldehyde and analyzed by
flow cytometry.

Results
Dil-lipoprotein binding in three cell lines, Sf9-CD36, CHO-
CD36 and C32
Previous reports have indicated that CD36 expressed in Sf
9 and COS 7 cells [24] interacts with OxLDL, LDL and
HDL, while CD36 expressed in CHO cells does not [35].
To determine if cell type specific lipoprotein binding was
present in different cell lines, Sf9-CD36, CHO-CD36 and
C32 were incubated with DiI labeled lipoprotein

(1,1'diotadecyl3-3'-3'-tetramethylindocarbo-cyanine per-
chlorate (Dil) [36] prior to examination by fluorescence
microscopy. Sf9 cells infected with baculovirus containing
the gene for human CD36 displayed an intense staining
with each of the three lipoproteins (Fig. 1, Sf9-CD36), as
has been previously reported [24,33]. Whereas mock-
transfected Sf9 cells did not bind DiI-labeled lipoproteins
(Fig. 1, Sf9). CHO cells that expressed the CD36 gene
bound DiI-oxLDL but not Dil-HDL or Dil-LDL. (Fig. 1,
CHO-CD36). CHO-mock cells did not interact with any
of the lipoproteins (Fig. 1, CHO-mock). These ligand pref-
erences were consistent with our previous observations,
however we wished to extend these observations to
human cells. We therefore repeated our experiments using
C32 amelanotic melanoma cells, which endogenously
express human CD36 [37-39]. The ligand preferences of
C32 cells were found to be similar to CHO-CD36 cells
(Fig. 1, C32). The interaction was specific to CD36 since
receptor blockade with an anti-CD36 antibody (Fig. 2A)
and competition with unlabeled oxLDL (Fig. 2C) inhib-

Effect of specific antibodies against human CD36 and unlabeled oxLDL on the binding of Dil-labeled OxLDL to CHO-CD36 cellsFigure 2
Effect of specific antibodies against human CD36 and unlabeled oxLDL on the binding of Dil-labeled OxLDL to 
CHO-CD36 cells. CHO-CD36 cells were first incubated with the anti-CD36 antibody FA6 (panel A) or mouse serum IgG 
(Panel B) or unlabeled oxLDL (panel C) and then 10 μg/ml of Dil-labeled OxLDL was added to incubate for a further 2 – 4 
hours. The concentrations of anti-CD36 antibody in panel A and of mouse IgG serum in panel B from top to bottom are: 0, 2, 
4, 6, 8 and 10 μg/ml respectively. The concentrations of unlabelled OxLDL in panel C from top to bottom are: 20, 40, 100, 200, 
and 400 μg/ml. Lipoprotein binding to cells (expressed as mean relative fluoresence) was determined by flow cytometry.
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ited the interaction of labeled oxLDL with CHO-CD36
cells.

Effect of filipin on lipoprotein binding to CHO-CD36 and 
C32 cells
CD36 has palmitoylated cysteine residues in its trans-
membrane regions which is consistent with its localiza-
tion to caveolae [40-42]. Numerous receptors are known
to change their behavior when they become associated
with caveolae [29,43,44], therefore we examined the
effect of the caveolae disrupting agent filipin [45] on the
interaction between CHO-CD36 cells and DiI-lipopro-
teins. Untreated CHO-CD36 cells bound only oxLDL (Fig.
1), however when CHO-CD36 cells were exposed to fili-
pin at 10 μg/ml for 30 min, they bound all three Dil-lipo-
proteins (Fig. 3A). Compared to untreated samples, filipin
increased CHO-CD36 cell-associated Dil-HDL and Dil-
LDL by 160% and 120% respectively, however no signifi-
cant change was detected for DiI-oxLDL binding to CHO-
CD36 cells (Fig. 3B). C32 cells, which natively express
CD36, were treated in the same manner and results simi-

lar to those seen in CHO-CD36 cells were obtained
(results not shown). Caveolae are surface invaginations or
clefts [46]. To determine if the observed binding changes
were accompanied by an increase or decrease in surface
accessible CD36, we evaluated CD36 surface expression
by flow cytometery using an anti-CD36-FITC conjugated
antibody. Upon treatment with filipin CD36 detectable
on the surface was significant increased in CHO-CD36
(Fig. 4).

Changes in CD36 ligand preference are associated with 
disruption of caveolae-enriched membrane fraction
To confirm the hypothesis that filipin treatment causes
CD36 to dissociate from caveolae-enriched membrane in
CHO CD36, we partially purified the caveolin-enriched
membrane fraction from CHO-CD36 cell lysate using a
detergent-free method [47]. Immunoblotting of the frac-
tions obtained from untreated CHO-CD36 cells with both
an anti-CD36 antibody and an anti-caveolin antibody
indicated that CD36 was present in the caveolin-enriched
membrane faction (Fig. 5). In contrast, when cells were
treated with filipin the amount of CD36 in the final two
fractionation steps was greatly diminished (lane 3, 4, Fig.
6A). A semi-quantitative comparison of the caveolin-rich
membrane fractions from filipin-treated and untreated
CHO-CD36 cells indicated that the amount of CD36 in
the final purification fractions of filipin treated cells was
decreased by about 30 – 40% relative to the untreated
samples (Fig 6B). No difference was seen for the amount
of caveolin protein present in the filipin-treated and
untreated fractions (Fig. 6B) suggesting that the redistri-
bution of CD36 and its change in ligand preference are
related events. Double immunoflorescent staining of
CHO-CD36 cells with both anti-CD36 and anti-caveolin
antibodies showed that cells without filipin treatment,
both CD36 and caveolin concentrated around mem-

Effects of filipin on CD36 surface protein expression in CHO-CD36 cellsFigure 4
Effects of filipin on CD36 surface protein expression 
in CHO-CD36 cells. CHO-CD36 cells were treated with 
filipin at 10 μg/ml and assayed for CD36 protein expression 
by immuostaining with FITC-conjugated anti-CD36 antibody 
(Left panel, no filipin treated; middle panel, filipin treated 
showing higher fluoreence indensity) and flow cytometry 
(right panel, dark traces treated with filipin and gray traces 
without filipin treatment as control).

Effects of filipin on Dil-lipoprotein binding to CHO-CD36 cellsFigure 3
Effects of filipin on Dil-lipoprotein binding to CHO-
CD36 cells. Panel A: CHO-CD36 cells were pre-treated 
with 10 μg/ml of filipin at 37°C for 30 minutes and then they 
were exposed to 10 μg/ml of Dil-lipoprotein at 37°C for 4 
hours. The cells were fixed with 4% formaldehyde and 
viewed under fluorescent microscope. Panel B: Cells were 
treated same as in A and were then assayed for the presence 
of Dil by flow cytometry. The data in B represents an average 
result of three independent experiments.
Page 5 of 9
(page number not for citation purposes)



Lipids in Health and Disease 2008, 7:23 http://www.lipidworld.com/content/7/1/23
branes (Fig. 7,-Filipin), and however, when treated with
filipin, more CD36 proteins appeared in the cytoplasm
(Fig. 7, +Filipin).

Discussion
We conclude that the local plasma membrane environ-
ment in which CD36 is located, e.g. whether CD36 is
present in caveolae or in the general membrane fraction,
influences the receptor's capacity to bind to native lipo-
proteins. This conclusion may reconcile why CD36 was
originally identified as a receptor for oxLDL, but not
native HDL or LDL or acetyl LDL [48,49] when CD36 was
expressed in 293 cells, but that recent studies using CD36
transfected Sf9 and COS-7 cells have indicated that native
HDL, LDL, VLDL, as well as OxLDL all bind with high
affinity to CD36 [24,33]. It is also consistent with the

observation that the interaction of Plasmodium falciparum-
infected erythrocytes with CD36 is inhibited by some lig-
ands (i.e. pRBCs and oxLDL) in all cell types, while inhi-
bition with other ligands (i.e. LDL and HDL) were
dependent on the expression system used [33].

Our initial experiments confirmed and extended the bind-
ing studies of Calvo et al [8,24] and focused on ensuring
that the ligand preference of CD36 expressed in Sf9 cells,
CHO cells and C32 cells was, as we and others, have
described it (Fig. 1). We are confident that the majority of
the lipoprotein binding observed with Sf9 and CHO cells
is due to the CD36 receptor that has been introduced into
these cell lines since mock (either baculovirus control or
vector only) cell line controls show minimal amounts of
lipoprotein binding. A similar control cell line is not avail-
able for C32 cells, however: 1) the staining pattern of
these cells strongly resembles that seen in CHO-CD36
cells; and 2) C32 cells support pRBC adherence in the
presence of native lipoproteins, which suggests that unox-
idized lipoproteins do not compete for CD36 in this sys-
tem. We therefore conclude that C32 cells may reflect the
ligand preferences of CD36 in vivo.

We have previously speculated that expressing human
CD36 in several different cell types could lead to a com-
mon amino acid sequence but with cell type specific gylc-
osylation states or covalent modifications and that these
may determine ligand preference. While we cannot rule

Purification of caveolin-enriched membrane fraction from CHO-CD36 cells and identification the colocalization of caveolin and CD36 proteinsFigure 5
Purification of caveolin-enriched membrane fraction 
from CHO-CD36 cells and identification the colocali-
zation of caveolin and CD36 proteins. Purification of the 
caveolin-enriched membrane fraction was as described in 
Materials and Methods. A: Coomassie blue staining of protein 
profile from purification fractions. Lane 1, whole cell lysate 
(80 μg); lane 2, post nuclear supernatant (60 μg), lane 3, 
Optiprep gradient fraction (30 μg), and lane 4, caveolin-
enriched membrane fraction (20 μg). The same amount of 
proteins (30 μg) from each fraction as in Panel A was ana-
lyzed with Western blots by anti-CD36 antibody (B) and 
anti-caveolin antibody(C).

Semi-quantitation of caveolin and CD36 with and without fil-ipin treatmentFigure 6
Semi-quantitation of caveolin and CD36 with and 
without filipin treatment. Caveolin-enriched membrane 
protein fractions same as in Fig. 5 were analyzed with both 
anti-CD36 antibody (upper panel in A) and anti-caveolin anti-
body (lower panel in A) for the two protein presence. B. 
Quantitative comparison of caveolin and CD36 proteins in 
final caveolin-enriched membrane fraction from either filipin 
treated or untreated cells with dot blots. From left to right, 
5, 10, 20 and 40 μg/dot of total proteins were loaded.
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out this possibility, the effect of filipin, which modifies
the properties of the lipid membrane [44], strongly sug-
gests that differences in native lipoprotein ligand prefer-
ence do not result from covalent modification alone.
Similarly, the relatively short time required to alter the lig-
and preference of the CHO CD36 and C32 cells suggests
that alterations of the amount or structure of the receptor
because of altered synthesis rates [27] are not involved.
Filipin is able to bind to and remove cholesterol from
mammalian membranes, particularly from the choles-
terol enriched segments that form invaginated regions of
the membrane responsible for endocytosis, mechan-
otransduction, signaling, cholesterol exchange [50] and
the induction of apoptosis [50].

While our results confirmed that CD36 was colocalized
with the protein marker of caveolae, caveolin-1, which
suggested that the entry and exit of CD36 into caveolae
may function as a mechanism to control the cholesterol
content of a cell. Caveolae are cell surface plasma mem-
brane invaginations observed in different type of cells and
their protein marker caveolin-1 has been implicated in the
development of an atheroma and involved in regulating
several signal transduction pathways and processes that
play an important role in atherosclerosis[51,52]. Fielding
et al (1997, 1995) have also observed that caveolae are
clathrin-free cell-surface organelles implicated in trans-

membrane transport. When 3H-labeled free cholesterol
was selectively transferred to the cells from labeled low
density lipoprotein to increase cell free cholesterol
approximately 15%, there was a 6-fold increase in label in
the caveolar fraction above baseline levels. When okadaic
acid was used, it decreased cholesterol efflux, which indi-
cate that caveolae represent a major site of efflux of both
newly synthesized and low density lipoprotein-derived
free cholesterol in cells[53,54]. In our study, the lipopro-
tein binging profile of in CHO-CD36 cells was altered by
filipin treatment (Fig. 3) and the filipin treatment could
alter the redistribution of CD36 molecules in caveolae
into cytoplasm.Gaus et al.(2005) demonstrated that the
caveolae proteins in the depleted membrane are affected
differently by detergents and the depletion of chlosterol
severely alters lipid raft structure, causing the dipersal of
caveolar raft-assiciated proteins into non- raft domains of
the plasma membrane [55] However, its molecular mech-
anism how CD36 and caveolin interaction in regulating
lipoprotein transport remains to be further studied.

Filipin treatment of CHO-CD36 cells appeared to have lit-
tle effect on the capacity of CD36 to interact with oxLDL
(Fig. 3) or pRBC (data not shown). This may appear to
contradict the findings of Frank et al [51] that treatment
of macrophages with cyclodextran reduces oxLDL uptake,
however these results were obtained after a much longer
treatment period (16 hr) and were found to be due to the
regulation of CD36 expression. Short term treatments
produced a translocation of CD36 accompanied by a
change in the surface distribution of CD36 and an
increase in the staining intensity [56]. Similar results were
obtained with C32 cells and therefore we expect that
sequestration of CD36 in caveolae may be a physiologi-
cally relevant short term mechanism of lipid traffic con-
trol. Further studies are needed to determine the specific
binding sites of CD36 on caveolin molecules and their
signal regulation pathways, which may provide a patho-
logical implication in lipid-related diseases.
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HDL: High Density Lipoprotein; HEPES: 4-(2-Hydroxye-
thyl)-1-Piperazineethane Sulfonic acid; LDL: Low Densiv-
ity Lipoprotein; MARCO: Microphage Receptor with
Collagenous Domain; oxLDL: oxidized LDL; PRBCs: Plas-
modium falciparum-infected lood cells; SR-B1: Scavenger
Receptor B1; VLDL: Very Low Density Lipoprotein.
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Redistribution of caveolin and CD36 proteins on CHO-CD36 upon filipin treatmentFigure 7
Redistribution of caveolin and CD36 proteins on 
CHO-CD36 upon filipin treatment. CHO-CD36 cells 
upon treated with filipin and then fixed with 4% formalde-
hyde in PBS, and double immunostained with either FITC-
conjugated anti-CD36 antibody and rodomin-conjugated 
anti-caveolin antibody. The stainned cells were examined 
under confocal microscope. Upper panel: no filipin was 
treated and lower panel: filinpin was treated showing more 
CD36 staing in cytoplam. Magnifications 400×.
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