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Abstract
Background: Oxidative modification of low-density lipoprotein (LDL) is a key event in the oxidation
hypothesis of atherogenesis. Some in vitro experiments have previously suggested that high-density
lipoprotein (HDL) co-incubated with LDL prevents Cu2+-induced oxidation of LDL, while some
other studies have observed an opposite effect. To comprehensively clarify the role of HDL in this
context, we isolated LDL, HDL2 and HDL3 from sera of 61 free-living individuals (33 women and
28 men).

Results: When the isolated LDL was subjected to Cu2+-induced oxidation, both HDL2 and HDL3
particles increased the rate of appearance and the final concentration of conjugated dienes similarly
in both genders. Oxidation rate was positively associated with polyunsaturated fatty acid content
of the lipoproteins in that it was positively related to the content of linoleate and negatively related
to oleate. More saturated fats thus protected the lipoproteins from damage.

Conclusion: We conclude that in vitro HDL does not protect LDL from oxidation, but is in fact
oxidized fastest of all lipoproteins due to its fatty acid composition, which is oxidation promoting.

Background
Epidemiological studies show an inverse correlation
between high-density lipoprotein (HDL) concentration
and the risk of developing coronary artery disease [1].
According to a widely accepted hypothesis, HDL or its
subtractions play an important role in recruiting and
transporting cholesterol from peripheral tissues to the
liver for excretion, a series of events known as reverse cho-
lesterol transport [2]. Other properties of HDL link its
antiatherogenic functions to its antioxidative effects.
Some studies have shown that co incubation of LDL with

HDL in the presence of divalent copper prevents the oxi-
dative modification of LDL [3]. In some reports this find-
ing could not be confirmed, and in fact it has been
demonstrated that in vitro HDL is oxidized faster than
other lipoproteins [4]. When HDL is oxidatively modi-
fied, it alters to a form that causes macrophages to accu-
mulate cholesterol. [5]. It has been suggested that
systemic inflammation gives rise to prooxidant and proin-
flammatory HDL particles [6]. Oxidatively modified HDL
is found in atheromatous plaques from human aorta [7].
Oxidatively modified HDL is no longer capable of remov-
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ing cholesterol from cells, and it enhances LDL oxidation
[8].

The contradictory findings on the role of HDL on LDL oxi-
dation in vitro may be due to rather small study popula-
tions, and the reported heterogeneity of oxidation kinetics
between lipoprotein preparations in vitro [9] which might
be due to individual intrinsic properties of the lipopro-
teins. In the present paper we report the results of a study
of the effect of HDL subtractions and gender on ex vivo
oxidation of LDL from a population of 61 healthy free-liv-
ing human subjects.

Results
Background characteristics of the men and women partic-
ipating in the study are shown in Table 1. Compared with
women, men had higher body mass indices, serum total
cholesterol as well as LDL and apoB concentrations. Men
had smaller LDL size and smaller concentrations of serum
HDL and apoA-I than women.

The fatty acid compositions of ultracentrifugally isolated
LDL, HDL2 and HDL3 fractions were analyzed by gas liq-
uid chromatography (Table 2). There were no gender dif-
ferences in the total amounts of saturated,
monounsaturated and polyunsaturated fatty acids of LDL,
HDL2 and HDL3. The calculated peroxidizability indices
were also similar in men and women. In both genders this
index increased significantly from LDL to HDL2 to HDL3
(p < 0.001, Wilcoxon's matched pairs test).

The oxidation of LDL of all subjects gave rise to typical
conjugated diene vs. time -curves, where the different
phases of hydro peroxide formation were clearly discerni-
ble. Co incubations of LDL with either HDL2 or HDL3 pro-
duced biphasic profiles with faster oxidation in the
beginning, followed by a slower rate and finally a faster

propagation phase. The profiles looked similar in all par-
ticipants.

Co incubation of LDL with HDL2 or HDL3 decreased the
mean lag time of diene formation in both women and
men (Table 3). Likewise, the mean propagation rate and
the maximum diene concentration increased significantly
in the presence of HDL. These oxidation parameters did
not differ between women and men.

Multiple forward stepwise regression analysis was per-
formed to estimate the effect of lipids and factors related
to lipoprotein metabolism on oxidation parameters. Pre-
dictors for the multivariate analysis were selected on the
basis of initial correlation analyses using Spearman's cor-
relation coefficients. The resulting models formed consist-
ent patterns of predictors. The results of the models for the
mixtures of LDL + HDL2 are shown in Table 4. The results
were similar for mixtures of LDL and HDL3, and for LDL
alone (not shown). In these incubations, an increase in
lag time was related to fasting blood glucose concentra-
tion, and a decrease in lag time was related to the peroxi-
dizability index. Oxidation rate was positively associated
with PUFA content of the lipoproteins. Maximum concen-
tration of dienes was positively related to the content of
linoleate and to the ratio of LDL to apoB, and negatively
related to oleate.

Although the mean lag time was shorter in the presence of
HDL2 or HDL3, there were nine subjects who had longer
lag time when HDL2 was co incubated with LDL. We ana-
lyzed, whether there were any differences between these
nine subjects and the rest of the study group that could
explain the increased lag time. These nine subjects had a
significantly smaller peroxidizability index of HDL2 (88.0
± 12.3 vs. 95.4 ± 9.5, p < 0.05) than the rest of the group.
Their LDL lag time was slightly shorter (55.7 ± 4.7 vs. 61.0

Table 1: Characteristics of the study subjects.

Women Men All

N 32 27 59
Age (years) 39.3 ± 10.5 39.3 ± 11.0 39.3 ± 10.6
Body mass index (kg/m2) 23.2 ± 3.1 25.8 ± 3.6** 24.4 ± 3.6
Total cholesterol (mmol/l) 5.23 ± 0.87 5.76 ± 1.02* 5.47 ± 0.97
Triacylglycerol (mmol/l) 0.96 ± 0.41 1.81 ± 1.27*** 1.35 ± 0.71
HDL cholesterol (mmol/l) 1.88 ± 0.32 1.38 ± 0.23*** 1.65 ± 0.38
LDL cholesterol (mmol/l) 2.91 ± 0.84 3.63 ± 0.92** 3.21 ± 0.96
ApoA-I (g/l) 1.70 ± 0.20 1.46 ± 0.13*** 1.59 ± 0.21
ApoB (g/l) 0.81 ± 0.20 1.00 ± 0.22** 0.90 ± 0.23
Lp(a) (U/l) 266 ± 226 165 ± 201 220 ± 219
fB-Glucose (mmol/l)a 4.4 ± 0.4 4.6 ± 0.6 4.5 ± 0.5
LDL diameter (nm) 26.94 ± 0.45 26.40 ± 0.55*** 26.70 ± 0.51

Values are mean ± SD. a fB, fasting blood, * p < 0.05, ** p < 0.01, *** p < 0.001 compared to women by Mann-Whitney U-test.
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± 7.7 µmol/l/min, p < 0.05) and their fasting blood glu-
cose concentration was lower (4.1 ± 0.5 vs. 4.5 ± 0.5
mmol/l, p < 0.05).

Discussion
We found that co incubation of HDL2 or HDL3 with LDL
in the presence of Cu2+ resulted in shortening of the mean
lag time and acceleration of the oxidation rate in compar-
ison with that of incubation of LDL alone. If lag time or
propagation rate are thought of as indices of oxidation
resistance, this outcome contradicts the role of HDL as an
antioxidant. Our findings are in line with the studies by
Bowry et al. [4], Suzukawa et al. [10], Schnitzer et al. [11],
Ohmura et al. [12] and Raveh et al. [9], who have come to
the conclusion that HDL is more easily oxidized than
LDL. In other studies, HDL has appeared to be less prone
to oxidation and even to protect LDL against copper-
induced oxidation [3,13-15]. In the study of Kontush et al.
[16] all subtractions of HDL exhibited limited capacities
to protect LDL at early stages of oxidation. At later phases,
small dense HDL particles were the most potent inhibitors
of LDL oxidation under mildly oxidative conditions. If
strongly oxidative conditions were used [5 µmol/l Cu2+),
none of the HDL subtractions offered any protection to
LDL. The results were fairly similar whether the subspecies
were isolated from serum or EDTA-plasma despite their
widely differing paraoxonase activities suggesting that

paraoxonase may have had a smaller role in the inhibi-
tion. In our study the HDL2 subtraction of the majority of
the subjects had properties that enhanced the onset of
propagation phase. However, in 9 participants this phase
was delayed in the presence of a moderate concentration
of Cu2+ emphasizing that the individual variation of
intrinsic characteristics of lipoproteins can not be over-
looked.

In all, kinetic analyses by different investigators of the
effects of HDL on copper-induced peroxidation of LDL are
difficult to compare. (a) Firstly, the concentrations of LDL
and HDL have been inconsistent and their expression has
been variably based on protein, total lipid, total mass,
phospholipid or cholesterol concentration, molar con-
centrations or particle numbers. The investigations into
the kinetics of lipoprotein oxidation of Raveh et al. [9]
and Ziouzenkova et al. [17] showed that the lag time and
the propagation rate are dependent on LDL concentra-
tion. (b) Secondly, copper concentrations have also dif-
fered between the experiments. This has profound
implications, since it has been shown in kinetic experi-
ments that the lag time and the oxidation rate are corre-
lated with the copper concentration until a saturating
concentration is reached [9,16,18]. However, until more
data are available, there is reason to think that the number
of copper binding sites of lipoproteins is not constant but

Table 2: Percentage composition of fatty acids of LDL, HDL2 and HDL3 in 59 healthy subjects.

Women Men

Fatty acid LDL HDL2 HDL3 LDL HDL2 HDL3

14:0 0.80 ± 0.22 0.67 ± 0.19 0.61 ± 0.17 0.97 ± 0.29* 0.94 ± 1.41*** 0.76 ± 0.26*
16:0 19.50 ± 1.27 22.68 ± 1.41 22.45 ± 1.51 19.39 ± 1.23 22.79 ± 1.30 22.25 ± 1.10
16:1(n-7) 2.28 ± 0.64 1.72 ± 0.51 1.69 ± 0.51 2.22 ± 0.79 1.82 ± 0.71 1.87 ± 1.21
18:0 5.44 ± 0.58 8.18 ± 0.91 8.24 ± 0.90 5.71 ± 0.35 8.41 ± 0.67 8.71 ± 0.60
18:1T 0.35 ± 0.11 0.38 ± 0.12 0.36 ± 0.12 0.38 ± 0.15 0.45 ± 0.19 0.42 ± 0.16
18:1(n-9) 21.44 ± 1.63 17.79 ± 1.21 16.91 ± 1.02 21.12 ± 2.37 19.62 ± 3.09 17.77 ± 2.29
18:2(n-6) 34.92 ± 2.88 30.20 ± 2.93 30.71 ± 3.00 34.92 ± 4.16 28.38 ± 3.90 29.41 ± 3.72
18:3(n-3) 0.87 ± 0.22 0.67 ± 0.18 0.65 ± 0.18 0.87 ± 0.20 0.77 ± 0.23 0.69 ± 0.18
18:3(n-6) 0.43 ± 0.14 0.28 ± 0.09 0.28 ± 0.01 0.53 ± 0.26 0.34 ± 0.20 0.35 ± 0.20
20:0 0.31 ± 0.04 0.26 ± 0.03 0.22 ± 0.03 0.26 ± 0.04*** 0.23 ± 0.03*** 0.19 ± 0.02**
20:3(n-6) 1.22 ± 0.29 1.85 ± 0.44 1.97 ± 0.49 1.34 ± 0.26 1.86 ± 0.39 2.09 ± 0.40
20:4(n-6) 5.40 ± 0.91 7.08 ± 1.04 7.70 ± 1.20 5.53 ± 1.14 6.67 ± 1.42 7.64 ± 1.49
20:5(n-3) 1.12 ± 0.59 1.28 ± 0.67 1.38 ± 0.75 1.26 ± 0.59 1.33 ± 0.55 1.50 ± 0.59
22:0 0.91 ± 0.10 0.75 ± 0.13 0.63 ± 0.14 0.86 ± 0.11 0.60 ± 0.12 0.55 ± 0.13
22:5(n-3) 0.40 ± 0.11 0.65 ± 0.16 0.68 ± 0.16 0.47 ± 0.07** 0.74 ± 0.12* 0.82 ± 0.11**
22:6(n-3) 2.18 ± 0.50 3.46 ± 0.73 3.70 ± 0.79 1.96 ± 0.53 3.25 ± 0.86 3.37 ± 0.88
24:0 0.84 ± 0.07 0.65 ± 0.09 0.56 ± 0.08 0.83 ± 0.14 0.63 ± 0.13 0.56 ± 0.12
24:1(n-9) 1.59 ± 0.21 1.43 ± 0.23 1.23 ± 0.21 1.39 ± 0.28** 1.17 ± 0.24** 1.04 ± 0.19*
ΣSAFA 27.82 ± 1.21 33.21 ± 1.16 32.77 ± 1.23 27.88 ± 1.18 33.54 ± 1.50 32.94 ± 1.12
ΣMUFA 25.33 ± 2.03 20.98 ± 1.54 19.86 ± 1.34 24.48 ± 2.67 22.28 ± 3.16 20.51 ± 2.63
ΣPUFA 46.51 ± 2.55 45.44 ± 2.00 47.02 ± 1.82 47.26 ± 3.66 43.75 ± 4.13 46.14 ± 3.48
PI 83.2 ± 7.4 96.1 ± 8.3 101.2 ± 9.3 83.7 ± 9.2 92.2 ± 12.0 99.2 ± 10.9

Values are mean ± SD. * p < 0.05. ** p < 0.01, *** p < 0.001 compared to women. ΣSAFA, sum of percentages of saturated fatty acids, ΣMUFA, sum 
of percentages of monounsaturated fatty acids, ΣPUFA, sum of percentages of polyunsaturated fatty acids, PI, peroxidizability index (see methods).
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varies [18]. (c) Thirdly, the ratio of copper to lipoprotein
has varied between studies. It has been found that the
kinetic profile of LDL oxidation changes in response to
copper concentration and that the familiar monophasic,
auto accelerating profile is only obtained when the copper
concentration is relatively high [17]. All of the compound
kinetic curves in our study had a biphasic shape. The first
phase of rapid oxidation in such a profile, whether
observed with HDL or LDL, has been interpreted to occur
via a tocopherol-mediated mechanism [9] where vitamin
E acts as a prooxidant. Because the rate of oxidation is reg-
ulated by the ratio of bound copper/lipoprotein as out-
lined above, the addition of HDL to LDL should,
theoretically, have lengthened the lag time and oxidation
rate instead of shortening it, since HDL bound part of the
copper. Obviously, many factors are involved in deter-
mining the outcome of this kind of experiment. Further-
more, it is apparent that ex vivo oxidization experiments
with lipoproteins require standardization.

Earlier studies have shown that there are several intrinsic
properties of lipoproteins that can affect their susceptibil-
ity to oxidation. Lipoprotein antioxidant content [19,20],
fatty acid composition [21,22], presence of various
enzymes [13] and LDL and HDL size [16,23] are among
the factors that have been shown to have an impact on
oxidation parameters, the former especially in supple-
mentation studies. Also, long-term habitual diets with dif-
ferent fatty acid contents have been shown to influence
LDL oxidation susceptibility [24]. We analyzed the fatty
acid compositions of LDL, HDL2 and HDL3 particles. Fatty
acids are highly intercorrelated, and therefore their use in
multivariate analysis as predictors is problematic. We
tried to overcome this difficulty by uniting the informa-
tion in the fatty acid profiles into a single term – the per-
oxidizability index – which describes the combined
reactivity of fatty acids towards reactive oxygen species

[25]. The results (Table 4) show that this index was signif-
icantly larger in both HDL2 and HDL3 than in LDL in men
as well as in women, suggesting that HDL particles might
be more susceptible to oxidation than LDL. This opinion
was further strengthened by the findings that in multiple
regression analysis the peroxidizability index of LDL,
HDL2 or HDL3 in combination with fasting blood glucose
concentration were the best predictors of lag time when
LDL was oxidized alone or in mixtures with HDL2 or
HDL3, respectively. Furthermore, our finding of a smaller
peroxidizability index in those subjects whose lag time
lengthened in the presence of HDL2 is in line with the
suggestion that the rate of oxidation is governed by the
ratio of bound copper to oxidizable lipids [26]. The results
of our experiments also confirm the findings of earlier
studies and suggest that the proportions of polyunsatu-
rated fatty acids as well as those of linoleic acid and oleic
acid [27-29] are related to the oxidation rate and the
amount of dienes formed during in vitro oxidation. We
have no ready explanation as to why the glucose concen-
tration had a positive correlation with lag time of oxida-
tion especially since all our subjects were normoglycemic.
It has been shown that LDL isolated from patients with
poorly controlled type I diabetes is more susceptible to
copper-induced oxidation than LDL from control subjects
[30]. Consequently, it has been suggested that glycated
LDL might be particularly prone to oxidation. Nonethe-
less, our result is more in line with the results obtained in
well-controlled type I diabetics, where glycated LDL gave
a longer lag time than that of nonglycated LDL [31].

Conclusion
In conclusion, we report that the lag time, the maximum
propagation rate for the formation of dienes and the
amount of dienes formed by Cu2+ -induced oxidation of
LDL alone or in the presence of HDL2 or HDL3 do not dif-
fer between healthy men and women despite significant

Table 3: Kinetic parameters of LDL, LDL + HDL2 and LDL + HDL3 oxidation in 59 healthy subjects.

Women Men All

LDL
Lag time (min) 60.9 ± 7.9 59.3 ± 6.9 60.2 ± 7.4
Rate (µmol/l/min)a 0.509 ± 0.067 0.502 ± 0.067 0.506 ± 0.066
Max (nmol/mg)b 541 ± 41 537 ± 51 539 ± 45
LDL + HDL2
Lag time (min) 56.0 ± 5.7*** 56.0 ± 6.7*** 56.0 ± 6.1***
Rate (µmol/l/min)a 0.687 ± 0.062*** 0.654 ± 0.084*** 0.671 ± 0.073***
Max (nmol/mg)b 774 ± 40*** 745 ± 71*** 762 ± 56***
LDL + HDL3
Lag time (min) 55.8 ± 5.4*** 54.8 ± 5.4*** 55.3 ± 5.4***
Rate (µmol/l/min)a 0.616 ± 0.064*** 0.607 ± 0.070*** 0.612 ± 0.066***
Max (nmol/mg)b 687 ± 40*** 674 ± 60*** 681 ± 50***

Values are mean ± SD. a Rate means maximal formation rate of conjugated dienes during oxidation. Calculation of the diene concentration is based 
on ε = 29500 of the conjugated dienes b Max is the maximal amount of dienes produced per mg of LDL protein. *** p < 0.001 in comparison with 
LDL alone in Wilcoxon's matched pairs test.
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differences in lipid concentrations. Our findings do not
support the concept that co incubation of LDL with HDL
in the presence of divalent copper prevents its oxidative
modification. Rather, our findings support previous
results that in vitro HDL is oxidized fastest of all lipopro-
teins [4] partly because of its fatty acid composition,
which is oxidation promoting.

Methods
Subjects
61 healthy subjects from the personnel and medical stu-
dents of the Department of Medical Sciences of Tampere
University and Tampere University Hospital volunteered.
The age range of the subjects was 20 to 58 years. 33 were
women and 28 were men. All participants filled in a ques-
tionnaire, where emphasis was given to their health status
(diseases and use of medication) in addition to health
related behavior (smoking, use of alcohol and vitamins).
Ten subjects were current smokers and two abstained
from alcohol. Fasting blood glucose concentration was
≤5.7 mmol/l in all subjects. Nine women and two men
reported the use of vitamins and 12 women used hor-
mone preparations. The results of two of the participants
were later removed from analysis because of reported dis-
eases Thus, 59 subjects remained. All participants gave
their written consent to the study. The study protocol was
approved by the ethics committee of the Tampere Univer-
sity Hospital.

Blood Samples
Fasting (12 h) blood samples were taken into suitable
tubes (Vacuette, Greiner) from the antecubital vein in a
sitting position after a 15-min rest using minimal stasis.
Samples for the isolation of lipoproteins and for LDL size
determination were taken into pre-chilled EDTA tubes,
which were immediately placed in ice. Plasma was sepa-
rated after centrifugation (Heraeus, 2000 xg, +4°C). EDTA
plasmas were supplemented with sucrose (0.6 % w/v final

concentration). This procedure has been shown to pre-
serve LDL from oxidation for at least two months and the
oxidation curve does not differ from that of a fresh sample
[32]. All samples were kept frozen at -70°C until ana-
lyzed. Fasting blood glucose concentration was deter-
mined from capillary blood using Hemocue Glucose
Analyzer (Hemocue, Ängelholm Sweden).

Analysis of Lipids and Lipoproteins
Cholesterol, HDL cholesterol, triacylglycerol, apoA-I and
apoB concentrations were measured with Cobas Integra
700 automatic analyzer (Roche Diagnostics, Basel, Swit-
zerland) using reagents and calibrators as recommended
by the manufacturer. LDL cholesterol was calculated
according to Friedewald. Lp(a) concentrations were ana-
lyzed by radioimmunoassay (Pharmacia, Uppsala Swe-
den) according to the manufacturer's instructions.

Isolation of Lipoproteins
Lipoproteins were fractionated by isopycnic density gradi-
ent ultracentrifugation using a Beckman SW40 Ti rotor in
a Beckman L60 centrifuge (36000 rpm, 40 hours, 10°C).
2.0 ml of plasma was gently mixed with 4.0 ml of d 1.35
g/l NaCl-KBr solution in a polyallomer 14 × 95 mm tube.
The mixture was then successively over layered with 4.5
ml of a d 1.006 salt solution and 1.0 ml of distilled water.
The gradients were fractionated as described [33] and 0.4-
ml fractions were collected. The fractions belonging to
LDL, HDL2 and HDL3 were pooled on the basis of the
absorbance curve. A part of the pooled fractions were
immediately frozen to -70°C and a part was used for the
oxidation experiments.

Oxidation of Lipoproteins
The susceptibility of LDL and mixtures of LDL and HDL
subtractions to in vitro copper-catalyzed oxidation was
assessed by the technique described in [34] as modified
from Esterbauer et al. [35]. LDL (50 µg protein/ml ≈ 0.1

Table 4: Multivariate regression models of factors predicting oxidation parameters in mixtures of LDL and HDL2.

Dependent variable Independent variable Standardized regression 
coefficient β

p-Value Total model

LDL + HDL2
Lag time (min) fB-Glucose 0.410 0.00037 R2 = 0.296

PI of HDL2 -0.351 0.00276 p < 0.00005
LDL + HDL2
Oxidation rate (µmol/ml/
min)

ΣPUFA of LDL 0.424 0.0325 R2 = 0.57

ΣPUFA of HDL2 0.352 0.0129 p < 0.00000
LDL + HDL2
Maximum diene HDL2 18:2n-6 0.429 0.00015 R2 = 0.55
concentration (nmol/mg) LDL 18:1n-9 -0.292 0.0071 p < 0.00000

LDL/apoB 0.287 0.0033

Abbreviations: PI, peroxidizability index; ΣPUFA, sum of percentages of polyunsaturated fatty acids; LDL/apoB, the ratio of LDL cholesterol to apoB 
concentration. Stepwise forward regression analysis
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µM) was incubated either alone or mixed with autologous
HDL2 (50 µg protein/ml ≈ 0.35 µM) or HDL3 (50 µg pro-
tein/ml ≈ 0.53 µM). The protein concentrations were
determined using the method of Markwell et al. [36]. Oxi-
dation was started by adding 10 µl of CuSO4 to a final
concentration of 1.65 µM Cu2+. The spectrophotometer
was computer-operated (UVWinlab 2.1). This program
also collected the absorbance data at 2-min intervals dur-
ing the oxidation. Several characteristic indices were
obtained from the resulting absorbance versus time curves
[32]. To control the in vitro oxidation procedure we pre-
pared an LDL pool as described [37] and stored it at -70°C
in 0.15-M NaCl/1 mM EDTA solution containing 0.6 %
sucrose. One control LDL was analyzed in every oxidation
run. The inter-assay coefficient of variation for lag time
was 3.1 %. This LDL preparation was also used as a stand-
ard in gradient gel electrophoresis.

Electrophoretic Analysis of Lipoprotein Size
For the estimation of lipoprotein particle size in EDTA-
plasma samples we used the nondenaturing gradient gel
electrophoretic method of Krauss and Burke [38]. How-
ever, the 2–16 % polyacrylamide gels were cast in-house
according to the instructions given by Pharmacia (Upp-
sala, Sweden) as described [39]. A control plasma sample
(peak particle diameter 27.00 nm) stored at -70°C was
included in every gel. The inter-assay coefficient of varia-
tion during this study was 1.1 %.

Fatty Acid Composition of Lipoproteins
The fatty acid compositions of the ultracentrifugally iso-
lated LDL, HDL2 and HDL3 fractions were analyzed by
capillary gas-liquid chromatography. Lipids were
extracted with chloroform/methanol, partitioned, and the
chloroform phase was dried under N2 [40]. The lipids
were then transesterified with H2SO4 in dry methanol at
85°C for 2 h under N2. Following the addition of water,
methyl esters of the fatty acids were extracted with petro-
leum ether and analyzed in a Shimadzu GC-14A gas chro-
matograph (Shimadzu Corporation, Kyoto, Japan) with a
flame ionization detector using a Supelco SP 2560 capil-
lary column (100 m, 0.25 mm I.D., 0.20 µm film thick-
ness). The carrier gas was helium. The column
temperature was held at 180°C for 15 min and thereafter
programmed to increase at 3°C/min until 230°C and
held at this temperature for 40 min. The individual fatty
acids were identified with the aid of a standard mixture of
methyl esters (Lipid standards 189-15 and 189-17,
Sigma). The areas were measured with a Shimadzu C-R4A
Chromatopac Integrator and the results expressed as per-
centages of the sum of all fatty acids from 14:0 to 24:1. As
a control sample we used a pool of isolated HDL that was
kept frozen at -70°C. The inter-assay coefficients of varia-
tion for the percentages of different fatty acids ranged
from 0.3 to 4.4 %. From fatty acid compositions, the fol-

lowing indices were calculated: saturated fatty acids
(SAFA) = Σ(%) of saturated fatty acids; monounsaturated
fatty acids (MUFA) = Σ(%) of monoenoic fatty acids; pol-
yunsaturated fatty acids (PUFA) = Σ(%) of polyunsatu-
rated fatty acids; peroxidizability index (PI) = [(Σ mol%
monoenoic FAs × 0.025) + (Σ mol% dienoic FAs × 1) + (Σ
mol% trienoic FAs × 2) + (Σ mol% tetraenoic FAs × 4) +
(Σ mol% pentaenoic FAs × 6) + (Σ mol% hexaenoic FAs ×
8)] [25].

Statistical Analysis
Results are expressed as means ± standard deviation.
Plasma triacylglycerol and Lp(a) concentrations were used
as their logarithms but reported as their original results.
Comparisons were conducted by analysis of variance or
covariance and Mann-Whitney U-test. For pair wise com-
parisons we used Wilcoxon's matched pairs test. Univari-
ate associations between variables were analyzed using
Spearman's correlation coefficients. Predictors for the
multivariate analysis were selected on the basis of the cor-
relation analyses. Multivariate analysis was done using the
stepwise forward linear regression technique. The Statis-
tica for Windows (version 5.1) software package (Statsoft
Inc., Oklahoma, USA) was used for the statistical analyses.
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