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Abstract
Background
Alterations in DNA methylation (DNAm) have been observed in patients with fatty liver, but whether they are cause or consequence remains unknown. The study aimed to investigate longitudinal association of epigenome-wide DNAm with liver fat content (LFC) in Chinese participants, and explore their temporal relationships.

Methods
Data were obtained from 2 waves over a four-year time period of the Shanghai Changfeng Study (discovery, n = 407 and replication, n = 126). LFC and peripheral blood DNAm were repeatedly measured using quantitative hepatic ultrasonography and the 850 K Illumina EPIC BeadChip, respectively. Longitudinal and cross-sectional epigenome-wide association studies (EWASs) were conducted with linear mixed model and linear regression model, respectively. Meta-analysis was performed using METAL. Cross-lagged panel analysis (CLPA) was carried out to infer temporal relationships between the significant CpGs and LFC.

Results
Longitudinal EWAS identified cg11024682 (SREBF1), cg06500161 (ABCG1), cg16740586 (ABCG1), cg15659943 (ABCA1) and cg00163198 (SNX19) significantly associated with LFC with P < 1e-7. Another 6 of the 22 previously reported CpGs were replicated in the present longitudinal EWAS. CLPA showed longitudinal effects of cg11024682 (SREBF1) (β = 0.14 [0.06, 0.23]), cg16740586 (ABCG1) (β = 0.17 [0.08, 0.25]), cg06500161 (ABCG1) (β = 0.12 [0.03, 0.20]), cg17901584 (DHCR24) (β = -0.10 [-0.18, -0.02]), cg00574958 (CPT1A) (β = -0.09 [-0.17, -0.01]), cg08309687 (LINC00649) (β = -0.11 [-0.19, -0.03]), and cg27243685 (ABCG1) (β = 0.09 [0.01, 0.18]) on subsequent LFC. The effects were attenuated when further adjusting for body mass index. High levels of LFC led to alterations in DNAm of cg15659943 (ABCA1) (β = 0.13 [0.04, 0.21]), cg07162647 (β = -0.11 [-0.19, -0.03]), cg06500161 (ABCG1) (β = 0.10 [0.02, 0.18]), and cg27243685 (ABCG1) (β = 0.10 [0.02, 0.18]).

Conclusions
Blood DNAm at SREBF1, ABCG1, DHCR24, CPT1A, and LINC00649 may be predictors of subsequent LFC change. The effects of DNAm at SREBF1 and ABCG1 on LFC were partially influenced by obesity. The findings have potential implications in understanding disease pathogenesis and highlight the potential of DNAm for early detection or intervention of fatty liver.
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Background
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased 50.4% over the past 3 decades, and it is estimated to be 38.2% recently [1]. The incidence rate of MASLD was reported to be highest in Mainland China [2]. The presence of MASLD is influenced by geographical region, race, genomic variation and lifestyle factors [3]. For example, genetic variant rs58542926 C > T of TM6SF2 was reported associated with the full spectrum of MASLD but lower blood lipid levels [4]. Further studies revealed that TM6SF2 mainly localizes to the smooth endoplasmic reticulum, and prevents MASLD by promoting bulk lipidation of apolipoproteins B-containing lipoproteins and very low-density lipoprotein exportation from liver [5, 6].
Epigenetic regulations, especially DNA methylation (DNAm), can also explain part of the variance of MASLD. Using liver biopsies, epigenome-wide association study (EWAS) of MASLD reported that differences in DNAm can distinguish patients with advanced vs. mild MASLD [7, 8], and DNAm alterations associated with MASLD were partially reversible by bariatric surgery [9]. Nevertheless, liver biopsy is invasive, costly, and difficult to standardize and repeat. There have been growing interests in identifying biomarkers from non-invasive imaging techniques and peripheral blood to predict the onset and stratify the severity of MASLD. Using peripheral blood DNA and 450k BeadChip, the largest EWAS of MASLD enrolled 3400 European participants and identified a total of 22 CpGs associated with hepatic fat, such as CpGs annotated to ABCG1, SREBF1, SLC7A11 and so on [10]. An EWAS of peripheral leukocytes from 35 Chinese MASLD patients and 30 healthy controls revealed that hypomethylation of ACSL4 and CPT1C was associated with MASLD [11].
However, prior studies mainly focused on cross-sectional associations of DNAm with MASLD or hepatic fat, and were limited by smaller size of detected probes-mostly less than 450,000. Ma et al. investigated potential causal association between the CpGs and MASLD using Mendelian randomization (MR) analyses, and observed a causal relationship between hypomethylated cg08309687 (LINC00649) and increased hepatic fat [10]. The relatively small-scale GWAS used might have led to insufficient statistical power in their MR analyses. Thus, this research was designed to investigate longitudinal associations between DNAm at > 700,000 CpGs in peripheral blood and liver fat content (LFC) in a Chinese cohort, and to assess temporal directional relationships between DNAm of the significant CpGs and LFC using cross-lagged panel analysis. It is hypothesized that DNAm alterations of different CpGs might be driver or consequence of LFC change through various pathways.

Methods
Study population and design
The study population and design are presented in Fig. 1. Shanghai Changfeng Study focuses on the risk factors and management of chronic cardiometabolic traits among Chinese residents aged ≥ 45 years in Changfeng community, Shanghai, China [12]. A total of 6595 residents were enrolled at baseline between 2009 and 2012, and 3343 of them were revisited between 2014 and 2017. The discovery cohort included 407 participants with complete DNAm data, among whom 358 and 405 had LFC data at baseline and at follow-up, respectively. Another 126 participants with complete DNAm data were included in the replication cohort, among whom 97 and 125 had LFC data at baseline and at follow-up, respectively. In the longitudinal analyses, the discovery and the replication cohorts included 358 and 96 participants without missing data, respectively.
[image: ]
Fig. 1Study population and design



Measurement of LFC and BMI
Participants received face-to-face interviews and provided basic information including age and sex. Current smokers were defined as smoking ≥ 1 cigarette/day for one or more years, and past smokers were defined as smokers that discontinued smoking for more than 6 months. LFC was measured by trained interviewers using a quantitative hepatic ultrasonography and calculated as LFC (%) = 62.592*standardized ultrasound hepatic/renal ratio + 168.076*standardized ultrasound hepatic attenuation rate-27.863 [13]. Body mass index (BMI) was obtained by dividing body weight by height squared (kg/m2).

Blood DNA methylation profiling, quality control, and data preprocessing
Genomic DNA of the study participants was extracted from peripheral blood using a DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany), followed by estimation of purity and concentration using NanoDrop One spectrophotometer and Qubit 3.0 Fluorometer (Thermo Scientific, Waltham, MA, USA). An EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA) was used to perform bisulfite conversion of DNA from each sample. Methylation profiles of DNA were measured with Illumina Infinium Methylation EPIC BeadChip (Illumina, San Diego, CA, USA).
Data quality control and preprocessing was conducted with the R package ChAMP separately in the discovery and the replication cohorts [14]. Probes were filtered out with the following criteria: detection P > 0.01, or > 3 beads in ≥ 5% samples, or non-CpG, or SNP-related, or multi-hit, or non-autosomal. Multidimensional Scaling plot, density plot, and dendrogram plot generated using the function champ.QC were used to further assess data quality. The final clean methylation working dataset contained 711,268 (discovery) and 740,701 (replication) autosomal CpG probes.
Beta value (β, 0–1 scale) was used to represent DNAm level of the CpGs, and normalization of the β value matrix was conducted with the BMIQ method [15]. Batch effects were estimated by using surrogate variable analysis, and were corrected by applying Combat [16] in ChAMP. CpG sites were mapped to human reference GRCh37 and annotated using IlluminaHumanMethylationEPICanno.ilm10b4.hg19. Leukocyte composition of each sample was estimated using the R package EpiDISH [17].

DNA methylation analysis
Longitudinal EWAS of LFC changes
For the 358 and the 96 participants in the two cohorts, DNAm and LFC were repeatedly measured. Longitudinal EWAS was performed using linear mixed models (LMM) in R package limma [18]. Methylation β value and LFC value were entered as the response and the independent variable, adjusting for age, sex, smoking and estimated leukocyte composition at baseline and at follow-up (model 1). Participant ID was entered as a random effect.
In literature reporting longitudinal EWAS of BMI, longitudinally changes in methylation and changes in BMI were used as independent and response variables [19]. Therefore, the association between longitudinally changes in DNAm and LFC was analyzed using multilinear regression, adjusting for age, sex, follow up time, and smoking status and estimated leukocyte composition at baseline and at follow-up (model 1).

Cross-sectional EWAS of LFC
Cross-sectional EWAS was performed to analyze the associations between DNAm and LFC at baseline and at follow-up, respectively. A multiple linear regression model in limma was used, adjusting age, sex, smoking and estimated leukocyte composition (model 1).
For both longitudinal and cross-sectional analysis, BMI was additionally adjusted in model 2.

Replication study
In the replication cohort, longitudinal and cross-sectional EWAS was conducted, adjusting for the same covariates as those in the discovery cohort in model 1 and model 2.

EWAS meta-analysis
In longitudinal and cross-sectional EWAS, inverse-variance weighted fixed-effects meta-analysis that combined EWAS results from the discovery and the replication cohorts was conducted, using the computationally efficient software METAL [20].
Epigenome-wide significant level was set at P < 1e-7 with Bonferroni correction.

Look up of the 22 known CpGs in Changfeng population
Twenty-two CpGs were reported cross-sectionally associated with hepatic fat in previous EWAS in European ancestry [10]. The CpGs were looked up in the present longitudinal EWAS meta-analysis results in model 1 to see whether they were also associated with LFC changes in individuals of Chinese ancestry. Associations between the 22 CpGs and LFC in cross-sectional EWAS meta-analyses at baseline and at follow-up respectively in model 1 are also presented. The significance level was set at 2.3e-3 (0.05/22) using Bonferroni correction.

Methylation quantitative trait loci (meQTL) of CpGs
To explore the potential genetic basis of the identified and replicated CpGs, clumped meQTLs of the markers were looked up in the EPIGEN MeQTL Database [21].


Functional enrichment analysis
Twenty CpGs that were most significantly associated with LFC in the longitudinal meta-analysis in model 1 were collected for the functional enrichment analysis. The CpGs were first annotated to their closest genes with the R package IlluminaHumanMethylationEPICanno.ilm10b4.hg19 [22]. Then, the Gene Ontology (GO) [23], Reactome pathway [24], and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway [25] enrichment of the annotated genes were conducted using the R package clusterProfiler v4.8.1 [26] (one-tailed hypergeometric test).

Cross-lagged panel analysis (CLPA)
CLPA is widely used to examine directional influences between intercorrelated and longitudinally changing variables. To test the longitudinal bidirectional relationship between LFC and DNAm, CLPA using longitudinal data of LFC and DNAm was performed, combining the two cohorts. Prior to analysis, LFC values were adjusted for age, sex, and smoking status by linear regression and residuals were Z-transformed; methylation β values were similarly processed but further adjusting for batch effects and estimated leukocyte composition (model 1). BMI was additionally adjusted in model 2. The analysis simultaneously estimated two cross-lagged path coefficients, which represent the effect of baseline LFC (or DNAm) on future DNAm (or LFC) at follow-up. Besides, temporal relationships between DNAm of the CpGs and BMI in model 1 are also presented. R package Lavaan with structural equation model was used to perform CLPA [27]. Model fitting was validated by a goodness-of-fit index > 0.90, a comparative fit index > 0.95, and a standardized root-mean-square residual < 0.08 [28].

Statistical analysis
Numerical variables are presented as mean (standard deviation, SD) for symmetrical distributions, and median [quartile 1, quartile 3] for asymmetric distributions. Differences in normally and nonnormally distributed data were analyzed using Student’s t test and the Mann-Whitney U test, respectively. Sex and smoking status are presented as n (%), and the chi-square test was used to compare proportions. All the statistical analyses were performed in the R statistical environment version 4.2.2. All reported p values are two-sided with a significance level of 0.05.


Results
Basic characteristics
The discovery cohort and the replication cohort had mean ages of 61.2 (SD: 7.29 years) and 61.9 (SD: 8.37 years) at baseline, respectively. Approximately 58% and 47% of the participants were female, respectively. The replication cohort had a slightly longer follow-up time than did the discovery cohort (4.39 years vs. 4.10 years). Baseline age, smoking status, BMI, LFC, and longitudinal change of LFC were comparable between the discovery and the replication cohorts (Table 1 and Additional File 1 Supplementary Fig. 1).
Table 1Basic characteristics of the study participants


	 	Discovery
	Replication
	 
	 	Baseline
(n = 358)
	Follow-up
(n = 405)
	Baseline
(n = 97)
	Follow-up
(n = 125)
	P†

	Female, %
	208 (58.1)
	234 (57.8)
	46 (47.4)
	59 (47.2)
	0.078

	Age, years
	61.2 (7.29)
	65.5 (7.34)
	61.9 (8.37)
	66.8 (8.60)
	0.407

	Smoke, %
	 	 	 	 	0.398

	 Never
	292 (81.6)
	328 (81.0)
	76 (78.4)
	93 (74.4)
	 
	 Past
	9 (2.5)
	11 (2.7)
	5 (5.2)
	11 (8.8)
	 
	 Current
	57 (15.9)
	65 (16.0)
	16 (16.5)
	21 (16.8)
	 
	BMI, kg/m2
	23.8 (2.96)
	24.6 (3.08)
	24.0 (2.44)
	24.6 (3.05)
	0.541

	LFC, %
	5.72
[2.21, 12.50]
	5.75
[2.25, 14.28]
	4.73
[1.75, 11.59]
	5.87
[2.33, 12.33]
	0.193

	Follow-up time, years
	4.10 (0.63)
	4.39 (0.72)
	0.003

	LFC change, %
	1.00 [-2.84, 6.45]
	2.79 [-2.31, 7.64]
	0.257


†P indicates the significance of differences between discovery and replication cohorts at baseline




Longitudinal EWAS
Longitudinal EWAS of LFC using LMM in the discovery cohort revealed that hypermethylation of cg11024682 (SREBF1), cg06500161 (ABCG1), and cg16740586 (ABCG1) was significantly associated with increased LFC after adjusting for age, sex, and smoking status (Fig. 2A; Table 2), which was successfully replicated in the replication cohort (P < 0.05 with the same direction of effects). Longitudinal EWAS of LFC using LMM in the replication cohort identified no significant associations (Fig. 2B). The fixed-effects meta-analysis combining EWAS results from the discovery and the replication cohorts revealed 5 significantly associated CpGs (P < 1e-7 with the same effect directions in the two cohorts), among which hypermethylation of cg15659943 (ABCA1) and cg00163198 (SNX19) was also associated with increased LFC (Fig. 2C; Table 2). Further adjusting for BMI attenuated the strength of the associations but the 5 CpGs remained near significantly associated with LFC (Table 2).
[image: ]
Fig. 2Manhattan plot of the longitudinal association of peripheral blood-derived DNA methylation with LFC using LMM. Plot was generated using results from the sex-, age-, and smoking-adjusted model in the discovery cohort (A), the replication cohort (B), and meta-analysis (C)


Table 2Significant CpGs in longitudinal EWAS and cross-sectional EWAS of LFC


	CpG
	Chr
	POS
	UCSC_
RefGene
	Gencode
BasicV12
_Group
	Relation_
to_Island
	Discovery
	Replication
	Meta-analysis
	P adjust BMI†

	Effect
	P
	Effect
	P
	P
	Effect Direction

	EWAS-LMM: LFC vs. DNAm

	cg15659943
	9
	107,631,656
	ABCA1
	Body
	OpenSea
	4.57E-04
	1.13E-06
	4.78E-04
	2.44E-02
	8.70E-08
	++
	6.89E-07

	cg00163198
	11
	130,767,760
	SNX19
	3’UTR
	OpenSea
	5.01E-04
	5.73E-07
	8.94E-04
	5.26E-05
	2.61E-10
	++
	3.04E-09

	cg11024682
	17
	17,730,094
	SREBF1
	Body
	S_Shelf
	6.43E-04
	1.93E-10
	6.94E-04
	2.09E-03
	1.61E-12
	++
	6.65E-09

	cg16740586
	21
	43,655,919
	ABCG1
	5’UTR
	S_Shore
	5.40E-04
	8.32E-08
	5.96E-04
	2.21E-02
	6.47E-09
	++
	7.39E-06

	cg06500161
	21
	43,656,587
	ABCG1
	5’UTR
	S_Shore
	4.82E-04
	1.39E-08
	5.17E-04
	1.11E-02
	5.64E-10
	++
	3.93E-07

	Longitudinal EWAS: △LFC vs. △DNAm

	cg09154567
	22
	44,239,861
	SULT4A1
	Body
	OpenSea
	-7.25E-05
	5.16E-01
	-1.34E-03
	7.68E-08
	2.30E-03
	--
	2.45E-08

	Cross-sectional EWAS: LFC vs. DNAm

	cg11024682
	17
	17,730,094
	SREBF1
	Body
	S_Shelf
	6.35E-04
	7.84E-07
	9.13E-04
	1.59E-03
	4.89E-09
	++
	1.71E-06

	cg07162647
	19
	40,466,275
	 	Body
	OpenSea
	-4.24E-04
	3.29E-07
	-5.71E-04
	1.75E-02
	1.95E-08
	--
	1.77E-07

	cg06500161
	21
	43,656,587
	ABCG1
	5’UTR
	S_Shore
	5.65E-04
	1.05E-07
	5.05E-04
	5.05E-02
	2.17E-08
	++
	4.10E-06


P < 1e-7 are marked bold. †P in meta-analysis except for cg09154567 (in the replication cohort), further adjust for BMI in model 2, are presented



Analysis of the association between longitudinal change of LFC and that of DNAm found that hypomethylation of cg09154567 annotated to SULT4A1 was associated with increased LFC in the replication cohort, but not significant in the discovery cohort or the meta-analysis (Additional File 1 Supplementary Fig. 2 and Table 2).

Functional enrichment
Functional enrichment analysis was conducted for the top 20 CpGs associated with LFC according to the longitudinal meta-analysis results (Table 3). Specifically, the enrichment of genes where the top CpGs located in terms of GO, KEGG, and Reactome pathways was checked. As a result, the following biological processes were significantly enriched: lipid storage and transport (Fig. 3A-B), NR1H2 and NR1H3-mediated signaling (Fig. 3C), ABC transporters and cholesteral metabolism (Fig. 3D), and some other lipid-related functions and pathways.
Table 3Top 20 CpGs that most significantly associated with LFC in the longitudinal meta-analysis in model 1


	CpG
	Chr
	POS
	UCSC_
RefGene
	Gencode
BasicV12_Group
	Relation
to_Island
	Zscore
	P
	Effect Direction

	cg11024682
	17
	17,730,094
	SREBF1
	Body
	S_Shelf
	7.064
	1.613E-12
	++

	cg00163198
	11
	130,767,760
	SNX19
	Body
	OpenSea
	6.32
	2.608E-10
	++

	cg06500161
	21
	43,656,587
	ABCG1
	Body
	S_Shore
	6.2
	5.642E-10
	++

	cg16740586
	21
	43,655,919
	ABCG1
	Body
	S_Shore
	5.804
	6.465E-09
	++

	cg15659943
	9
	107,631,656
	ABCA1
	Body
	OpenSea
	5.352
	8.702E-08
	++

	cg03694857
	2
	152,568,384
	NEB
	Body
	OpenSea
	5.149
	2.614E-07
	++

	cg13449394
	12
	109,230,732
	MIR619;SSH1
	Body
	OpenSea
	5.058
	4.248E-07
	++

	cg10819350
	19
	10,655,686
	ATG4D
	Body
	S_Shore
	5.047
	4.496E-07
	++

	cg07162647
	19
	40,466,275
	 	 	OpenSea
	-5.026
	5.014E-07
	--

	cg27243560
	12
	25,522,335
	 	 	OpenSea
	4.95
	7.413E-07
	++

	cg21137557
	5
	115,314,451
	LVRN
	Body
	OpenSea
	-4.902
	9.479E-07
	--

	cg00857282
	6
	16,130,727
	MYLIP
	Body
	S_Shore
	4.867
	1.135E-06
	++

	cg27243685
	21
	43,642,366
	ABCG1
	Body; 5’UTR
	S_Shelf
	4.862
	1.16E-06
	++

	cg00574958
	11
	68,607,622
	CPT1A
	5’UTR
	N_Shore
	-4.792
	1.655E-06
	--

	cg12748148
	2
	30,549,065
	 	 	OpenSea
	-4.791
	1.658E-06
	--

	cg13280734
	11
	57,252,275
	SLC43A1
	3’UTR
	S_Shore
	4.779
	1.763E-06
	++

	cg12188928
	17
	27,309,139
	SEZ6
	Body
	N_Shelf
	4.767
	1.87E-06
	++

	cg10558063
	1
	44,540,412
	 	 	OpenSea
	4.763
	1.906E-06
	++

	cg07504977
	10
	102,131,012
	 	 	N_Shelf
	4.743
	2.107E-06
	++

	cg07502358
	13
	78,168,218
	SCEL
	Body
	OpenSea
	-4.725
	2.297E-06
	--




[image: ]
Fig. 3Functional enrichment of the top 20 CpGs that most significantly associated with LFC. (A, B) Enrichment of the annotated genes in GO, where the x-axis represents the negative log p value of enrichment significance (A) and the number of genes overlapped with the functional term (B). (C, D) Enrichment of the annotated genes in Reactome pathways (C) and KEGG pathways (D)



Cross-sectional EWAS
Cross-sectional EWAS at baseline and at follow-up in the two cohorts was performed, respectively. EWAS in the meta-analysis at follow-up found that hypomethylation of cg07162647 and hypermethylation of cg11024682 (SREBF1) and cg06500161 (ABCG1) were cross-sectionally associated with higher LFC (Additional File 1 Supplementary Fig. 3 and Table 2).
As shown in Additional File 1 Supplementary Table 1, the significant CpGs identified in the longitudinal analyses were also cross-sectionally associated with LFC with consistent directionality and nominal P < 0.05 in the meta-analyses at baseline and at follow-up, respectively.
Further adjustment of BMI did not materially change the associations (Table 2 and Additional File 1 Supplementary Table 1). A total of 8 meQTLs were found for the 6 CpGs identified in Changfeng population (Additional File 1 Supplementary Table 2).

Look up of the 22 previously known CpGs
Previous EWAS of hepatic fat in 1,496 participants from the Framingham Heart Study identified 58 significant CpGs with an FDR < 0.05, 22 of which were successfully replicated in 1,904 participants from another three cohorts in a sex- and age-adjusted model [10]. Eight of the 22 CpGs remained significant in the longitudinal EWAS using LMM in model 1 after Bonferroni correction, and were also nominally significant in the meta-analyses in cross-sectional EWAS at baseline and at follow-up (Table 4). This suggested that alterations in DNAm detected in peripheral blood could be verified in different ethnic groups, and was associated not only with cross-sectional LFC variation but also with longitudinal LFC changes. A total of 9 meQTLs were found for the 6 CpGs (except for cg11024682 and cg06500161) validated in Changfeng population (Additional File 1 Supplementary Table 3).
Table 4Longitudinal and cross-sectional associations of 22 previously known CpGs with LFC in Changfeng population


	CpG
	Chr
	POS
	UCSC_
RefGene
	Gencode
BasicV12
_Group
	Relation_
to_Island
	Longitudinal
	Baseline
	Follow-up

	P†
	Effect Direction
	P
	Effect
Direction
	P
	Effect Direction

	cg09469355
	1
	2,161,886
	SKI
	 	S_Shore
	5.76E-01
	+-
	4.45E-01
	+-
	3.20E-01
	--

	cg17901584
	1
	55,353,706
	DHCR24
	TSS1500; 5’UTR
	S_Shore
	5.24E-04
	--
	7.49E-03
	--
	7.75E-03
	--

	cg03725309
	1
	109,757,585
	SARS
	 	S_Shore
	3.95E-01
	+-
	9.63E-01
	-+
	5.65E-01
	+-

	cg14476101
	1
	120,255,992
	PHGDH
	5’UTR
	S_Shore
	5.50E-01
	-+
	2.02E-01
	-+
	9.19E-01
	-+

	cg19693031
	1
	145,441,552
	TXNIP
	3’UTR; 5’UTR
	OpenSea
	1.45E-04
	--
	3.16E-02
	--
	2.44E-03
	--

	cg06690548
	4
	139,162,808
	SLC7A11
	 	OpenSea
	4.00E-01
	--
	1.63E-01
	--
	9.96E-01
	-+

	cg05119988
	4
	166,251,189
	SC4MOL
	5’UTR
	S_Shelf
	3.57E-01
	--
	2.77E-01
	--
	3.61E-01
	--

	cg03957124
	6
	37,016,869
	 	 	S_Shelf
	8.56E-02
	--
	7.81E-01
	+-
	1.21E-02
	--

	cg18120259
	6
	43,894,639
	 	 	OpenSea
	6.05E-02
	--
	8.78E-02
	--
	2.77E-01
	-+

	cg17501210
	6
	166,970,252
	RPS6KA2
	5’UTR
	OpenSea
	9.33E-01
	-+
	2.90E-01
	++
	2.46E-01
	-+

	cg21429551
	7
	30,635,762
	GARS
	 	S_Shore
	5.23E-01
	++
	8.57E-01
	-+
	4.18E-01
	++

	cg11376147
	11
	57,261,198
	SLC43A1
	3’UTR
	OpenSea
	2.15E-01
	--
	3.05E-01
	--
	2.07E-01
	--

	cg00574958
	11
	68,607,622
	CPT1A
	5’UTR
	N_Shore
	1.66E-06
	--
	3.36E-02
	--
	9.14E-06
	--

	cg26894079
	11
	122,954,435
	ASAM
	1stExon; 3’UTR
	OpenSea
	9.82E-02
	--
	3.72E-01
	--
	8.29E-02
	--

	cg11024682
	17
	17,730,094
	SREBF1
	 	S_Shelf
	1.61E-12
	++
	3.81E-05
	++
	4.89E-09
	++

	cg14020176
	17
	72,764,985
	SLC9A3R1
	3’UTR
	OpenSea
	9.36E-04
	++
	5.29E-02
	++
	8.95E-03
	++

	cg19016694
	17
	80,821,826
	TBCD
	3’UTR
	S_Shelf
	1.05E-01
	--
	3.88E-01
	--
	2.41E-01
	--

	cg15860624
	19
	3,811,194
	ZFR2
	 	Island
	1.29E-01
	++
	5.57E-01
	+-
	3.24E-01
	++

	cg08309687
	21
	35,320,596
	 	TSS1500; 5’UTR
	OpenSea
	1.32E-03
	--
	1.21E-01
	-+
	1.29E-03
	--

	cg27243685
	21
	43,642,366
	ABCG1
	5’UTR
	S_Shelf
	1.16E-06
	++
	2.00E-03
	+-
	4.94E-05
	++

	cg06500161
	21
	43,656,587
	ABCG1
	5’UTR
	S_Shore
	5.64E-10
	++
	5.39E-03
	++
	2.17E-08
	++

	cg02711608
	19
	47,287,964
	SLC1A5
	5’UTR;1stExon
	N_Shelf
	NA
	NA
	NA
	NA
	NA
	NA


†P < 2.3e-3 (0.05/22) are marked bold. Results in meta-analyses of the discovery and the replication cohorts are presented




Cross-lagged panel analysis
CLPA was performed to investigate the longitudinal directional relationships between LFC and DNAm of the 12 identified and replicated CpGs. In model 1 adjusting for age, sex, and smoking status, baseline hypermethylation at cg11024682 (SREBF1) (β = 0.14 [0.06, 0.23]), cg16740586 (ABCG1) (β = 0.17 [0.08, 0.25]), cg06500161 (ABCG1) (β = 0.12 [0.03, 0.20]), cg27243685 (ABCG1) (β = 0.09 [0.01, 0.18]) and hypomethylation at cg17901584 (DHCR24) (β = -0.10 [-0.18, -0.02]), cg00574958 (CPT1A) (β = -0.09 [-0.17, -0.01]), cg08309687 (LINC00649) (β = -0.11 [-0.19, -0.03]) predicted increased subsequent LFC; higher LFC led to hypermethylated cg15659943 (ABCA1) (β = 0.13 [0.04, 0.21]), cg06500161 (ABCG1) (β = 0.10 [0.02, 0.18]), cg27243685 (ABCG1) (β = 0.10 [0.02, 0.18]) and hypomethylation at cg07162647 (β = -0.11 [-0.19, -0.03]) (Fig. 4).
[image: ]
Fig. 4Cross-lagged path coefficients in longitudinal analysis of LFC and DNA methylation measured at baseline and at follow-up in model 1 adjusted for age, sex, and smoking status


Among the 12 identified and replicated CpGs, cg15659943 (ABCA1) (β = 0.07 [0.02, 0.11]) and cg11024682 (SREBF1) (β = 0.06 [0.01, 0.10]) showed longitudinal effects on subsequent increased BMI, and BMI was temporally associated with hypomethylation of cg00574958 (CPT1A) (β = -0.12 [-0.20, -0.05]) and cg08309687 (LINC00649) (β = -0.09 [-0.15, -0.03]) (Additional File 1 Supplementary Fig. 4).
In model 2 further adjusting for BMI, the temporal effects of cg11024682 (SREBF1), cg16740586 (ABCG1) and cg06500161 (ABCG1) on LFC were almost halved with p values of 0.076, 0.032, and 0.165, which indicated that the effects were partially influenced by increased obesity (Additional File 1 Supplementary Fig. 5). Temporal associations of other CpGs and LFC were not greatly changed (Additional File 1 Supplementary Fig. 5).


Discussion
The present research identified 5 CpGs associated with longitudinal change of LFC, another 1 CpG cross-sectionally associated with LFC, and replicated another 6 previously reported LFC-associated CpGs in longitudinal EWAS in the sex-, age-, and smoking-adjusted model. Among the significant CpGs, 9 showed longitudinal directional associations with LFC, and 8 remained significant after further adjusting for BMI in model 2. The findings are notable in not only identified/replicated DNAm of CpGs longitudinally associated with LFC in Chinese participants, but also distinguished between predictors and biomarkers.
Several cross-sectional EWASs have observed altered DNAm patterns collected from liver biopsies or peripheral blood samples of MASLD patients [29], but longitudinal EWASs of LFC are lacking. In accordance with previous studies, this study likewise showed that genes involved in lipid metabolism and biosynthesis pathways appeared to be the most prominent markers. Cg15659943, at which DNAm is longitudinally associated with baseline LFC, is annotated to ABCA1. A mild but significant effect of baseline LFC on subsequent hypermethylation at cg06500161 and cg27243685 mapping to ABCG1 was observed. ABCA1 and ABCG1 are members of the ABC transporter superfamily that are essential for the biogenesis of high-density lipoprotein (HDL) and reverse cholesterol transport. ABCA1 functions as an efflux pump of cholesterol from peripheral cells to apolipoprotein A-I and generates the nascent HDL, and ABCG1 facilitates subsequent cholesterol efflux to HDL for further maturation [30, 31]. These implicated that LFC alteration might regulate gene expression involved in reverse cholesterol transport via epigenetic mechanisms.
Cg00163198 is a novel EPIC array marker, and has been described to be related to incident type 2 diabetes [32] and cardiovascular health factors including BMI, blood pressure, glucose, and cholesterol levels [33]. It lies on the intronic region of the Sorting nexin 19 (SNX19) gene, which was found to be associated with liver enzymes, lipids, and body fat in a GWAS [34]. SNX19 enables the binding of lipids and phosphatidylinositol, and plays important roles in insulin secretion [35]. CpG cg00163198 located in an active regulatory region and was significantly correlated with an eQTL of SNX19 in the adipose tissue (eQTL P = 8.78 × 10− 22 by GTEx; meQTL P = 1.93 × 10− 13 by Pan-meQTL) [36]. This indicates that the regulation between cg00163198 and SNX19 is mediated by the eQTL and ultimately affects gene expression.
Evidence on causal relationships between DNAm and LFC or fatty liver is scarce to date. The present study did not conduct MR analysis due to the lack of large GWASs on LFC in Asian populations and insufficient statistical power. Previous studies applying CLPA reported that DNAm is a biomarker rather than a predictor or cause of BMI [37, 38], which was in accordance with the findings of MR [19] and longitudinal enrichment analysis [39]. Using CLPA in a cohort with repeatedly measured data, this study demonstrated that baseline hypermethylation at cg11024682 (SREBF1) and the three CpGs (cg16740586, cg06500161, and cg27243685) investigated mapping to ABCG1 predicted increased subsequent LFC levels. DNAm at cg11024682 (SREBF1) was reported associated with hepatic fat [10], BMI [19, 40], type 2 diabetes [41], blood triglyceride levels [42, 43], serum liver enzyme levels [44], and cardiovascular health [33]. Methylation at CpGs mapping to ABCG1 was reported associated with increased blood lipids, glucose, insulin, and increased risk of diabetes [45, 46]. DNAm of cg27243685 was reported associated with hepatic fat [10, 47]. Animal studies demonstrated that Abcg1 played a pivotal role in preventing hepatic fat accumulation in mice challenged with high-fat diet [48].
The temporal effects of DNAm of CpGs at SREBF1 and ABCG1 on subsequent LFC were reduced after adjusting for BMI. This was consistent with the findings from the cross-sectional EWAS in another study [10] and was not unexpected, as obesity, diabetes, and lipid metabolism are established correlated with each other and are related with MASLD. BMI was positively associated with LFC in Changfeng population with Spearman r = 0.32 (P < 2.2e-16), and increased obesity might lie on the mechanistic pathway from DNAm of CpGs at SREBF1 and ABCG1 to increased LFC. In CLPA, BMI showed weak association with cg11024682 (SREBF1) and non-significant associations with the three CpGs (cg16740586, cg06500161, and cg27243685) of ABCG1. Together, the results indicated that the effects of DNAm of SREBF1 and ABCG1 were mediated by increased BMI as well as other mechanisms, for example, diabetes and lipid metabolism.
Results of CLPA illustrated that hypomethylation at cg08309687 (LINC00649) has a strong prospective effect on increasing LFC, which was in accordance with previous findings from MR analysis [10]. There were four meQTLs at LINC00649 for cg08309687 according to the EPIGEN MeQTL Database. A three-way association by Ma et al. reported that 8% of the association of cg08309687 and hepatic fat was mediated by the expression of TMEM50B [10]. In addition, hypermethylation at cg17901584 (DHCR24) and cg00574958 (CPT1A) were putatively predictors for decreased LFC. DHCR24 encodes 24-dehydrocholesterol reductase that is involved in the final step of cholesterol synthesis, converting desmosterol into cholesterol [49]. Cg17901584 was also reported associated with metabolic traits such as BMI [19], blood lipids [43], and type 2 diabetes [50].
Strengths and limitations
The strength of this study lies in its prospective nature with repeatedly measured data, and it adds value to EWAS of fatty liver by distinguishing between predictors and biomarkers. This study has potential limitations. First, the modest sample size might result in limited statistical power to detect CpGs with small effect sizes. Second, the study used DNA from peripheral blood as liver tissues were unavailable. However, previous studies demonstrated that quantification of DNAm from peripheral blood or plasma cell-free DNA released by dying hepatocytes could reflect the severity of MASLD and could be suggested as an alternative approach with high accuracy to stratify MASLD [11, 51]. Third, experiments are needed to explore the mechanisms involved.


Conclusions
In summary, differences in peripheral blood DNA methylation occur in interindividual variation and intraindividual longitudinal change of LFC. Blood DNAm at SREBF1, ABCG1, DHCR24, CPT1A, and LINC00649 may be predictors of subsequent LFC change. The effects of DNAm at SREBF1 and ABCG1 were partially influenced by obesity, which implicates the importance of controlling body weight in preventing fatty liver. For clinical perspective, reversible alterations in DNA methylation result from various exposures and lead to changes in gene expression, distinguishing between predictors and biomarkers may be helpful in developing preventive and therapeutic strategies for fatty liver disease.
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